Time-of-Flight data is typically affected by a high level of noise and by artifacts due to Multi-Path Interference (MPI). While various traditional approaches for ToF data improvement have been proposed, machine learning techniques have seldom been applied to this task, mostly due to the limited availability of real world training data with depth ground truth. In this paper, we avoid to rely on labeled real data in the learning framework. A Coarse-Fine CNN, able to exploit multi-frequency ToF data for MPI correction, is trained on synthetic data with ground truth in a supervised way. In parallel, an adversarial learning strategy, based on the Generative Adversarial Networks (GAN) framework, is used to perform an unsupervised pixel-level domain adaptation from synthetic to real world data, exploiting unlabeled real world acquisitions. Experimental results demonstrate that the proposed approach is able to effectively denoise real world data and to outperform stateof-the-art techniques.
Depth maps acquired with ToF cameras have a limited accuracy due to the high noise level and to the multi-path interference. Deep networks can be used for refining ToF depth, but their training requires real world acquisitions with ground truth, which is complex and expensive to collect. A possible workaround is to train networks on synthetic data, but the domain shift between the real and synthetic data reduces the performances. In this paper, we propose three approaches to perform unsupervised domain adaptation of a depth denoising network from synthetic to real data. These approaches are respectively acting at the input, at the feature and at the output level of the network. The first approach uses domain translation networks to transform labeled synthetic ToF data into a representation closer to real data, that is then used to train the denoiser. The second approach tries to align the network internal features related to synthetic and real data. The third approach uses an adversarial loss, implemented with a discriminator trained to recognize the ground truth statistic, to train the denoiser on unlabeled real data. Experimental results show that the considered approaches are able to outperform other state-of-the-art techniques and achieve superior denoising performances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.