Radiochromic film dosimetry has been widely employed in most of the applications of radiation physics for over twenty years. This is due to a number of appealing features of radiochromic films, such as reliability, accuracy, ease of use and cost. However, current radiochromic film reading techniques, based on the use of commercial densitometers and scanners, provide values of dose only after the exposure of the films to radiation. In this work, an innovative methodology for the real-time reading of radiochromic films is proposed for some specific applications. The new methodology is based on opto-electronic instrumentation that makes use of an optical fiber probe for the determination of optical changes of the films induced by radiation and allows measurements of dose with high degree of precision and accuracy. Furthermore, it has been demonstrated that the dynamic range of some kinds of films, such as the EBT3 Gafchromic films (intensively used in medical physics), can be extended by more than one order of magnitude. Owing to the numerous advantages with respect to the commonly used reading techniques, a National Patent was filed in January 2018.
Radiochromic films are a commercial product available in a large number of different types. They can be used in a wide range of doses and fluence for different radiation types. The application in different fields such as photon and ion radiotherapy, industrial irradiations for modification of materials, sterilization and radiation hardness, makes very interesting to study the response of the films to more radiation types and energies. The aim of this work is to define the characteristics and dynamic range of EBT3 Gafchromic films for some specific applications. To this end the behaviour of EBT3 Gafchromic films has been studied in depth by comparing the films response to different radiation types. In particular, this work has been carried out to establish a useful procedure to monitor the electronic device's irradiations for radiation hardness applications. The dynamic range of EBT3 films has been found to be compatible with the typically demanded fluences and the calibration has been found to be absolute, namely independent of the incident radiation type. The easy handling, the possibility of replacement of the films and high resolution power allow the monitoring of irradiations with a high range of doses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.