Organismal movement is ubiquitous and facilitates important ecological mechanisms that drive community and metacommunity composition and hence biodiversity. In most existing ecological theories and models in biodiversity research, movement is represented simplistically, ignoring the behavioural basis of movement and consequently the variation in behaviour at species and individual levels. However, as human endeavours modify climate and land use, the behavioural processes of organisms in response to these changes, including movement, become critical to understanding the resulting biodiversity loss. Here, we draw together research from different subdisciplines in ecology to understand the impact of individual‐level movement processes on community‐level patterns in species composition and coexistence. We join the movement ecology framework with the key concepts from metacommunity theory, community assembly and modern coexistence theory using the idea of micro–macro links, where various aspects of emergent movement behaviour scale up to local and regional patterns in species mobility and mobile‐link‐generated patterns in abiotic and biotic environmental conditions. These in turn influence both individual movement and, at ecological timescales, mechanisms such as dispersal limitation, environmental filtering, and niche partitioning. We conclude by highlighting challenges to and promising future avenues for data generation, data analysis and complementary modelling approaches and provide a brief outlook on how a new behaviour‐based view on movement becomes important in understanding the responses of communities under ongoing environmental change.
The structure of leaf veins is typically described by a hierarchical scheme (e.g. midrib, 1st order, 2nd order), which is used to predict variation in conduit diameter from one order to another whilst overlooking possible variation within the same order. We examined whether xylem conduit diameter changes within the same vein order, with resulting consequences for resistance to embolism. We measured the hydraulic diameter (Dh), and number of vessels (VN) along the midrib and petioles of leaves of Acer pseudoplatanus, and estimated the leaf area supplied (Aleaf-sup) at different points of the midrib and how variation in anatomical traits affected embolism resistance. We found that Dh scales with distance from the midrib tip (path length, L) with a power of 0.42, and that VN scales with Aleaf-sup with a power of 0.66. Total conductive area scales isometrically with Aleaf-sup. Embolism events along the midrib occurred first in the basipetal part and then at the leaf tip where vessels are narrower. The distance from the midrib tip is a good predictor of the variation in vessel diameter along the 1st order veins in A. pseudoplatanus leaves and this anatomical pattern seems to have an effect on hydraulic integrity since wider vessels at the leaf base embolize first.
Plant associated microbial communities have recently received a lot of attention because thought to play a fundamental role in plant health and development. Focusing on cultivated crops, optimized farming practices must consider the role of these communities when aiming at reducing the impact of pathogens and increasing yields. Typical inhabitants of plant’s phyllosphere are bacteria and microscopic fungi, some of them pathogenic for the plant and dangerous for the consumers, due to the production of toxins. In order to efficiently manage the microbiome, the natural drivers regulating community assembly must be clearly understood. In our study we investigated the within field variation of the phyllosphere mycobiome of wheat ears by metabarcoding of the fungal internal transcribed sequence 1 (ITS1). We selected a field characterized by a high topographic heterogeneity, which is reflected in differences in plant productivity and fitness across it. Samples were taken from 30 sampling points laid across the field where data-loggers were placed, measuring the productivity driven under canopy microclimate. The microclimatic conditions were tested as a source of potential environmental variance. Further independent spatial structures were tested using spatial eigenvector maps (MEMs). Results show considerable differences in the phyllosphere composition across the field. The local under canopy environmental conditions at each point were strong predictors of the community composition. Independent spatial effects given by the geographical position of the sampling points showed also a weaker but significant effect. Moreover we observed different spatial responses from different fungal phyla, with results resembling those described in studies done at a regional scale. This study is the first one to investigate the spatial variation of the phyllosphere mycobiome of a commercial crop within the same field. It contributes to the study of the epidemiology and community assembly dynamics of wheat phyllosphere fungi, showing how in-field community variations are the results of different environmental and spatial processes acting simultaneously. It also shows how heterogeneous fields are a smart and useful system to investigate the ecological mechanisms regulating plant microbiome composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.