A well-known diffuse interface model consists of the Navier-Stokes equations nonlinearly coupled with a convective Cahn-Hilliard type equation. This system describes the evolution of an incompressible isothermal mixture of binary fluids and it has been investigated by many authors. Here we consider a variant of this model where the standard Cahn-Hilliard equation is replaced by its nonlocal version. More precisely, the gradient term in the free energy functional is replaced by a spatial convolution operator acting on the order parameter ϕ, while the potential F may have any polynomial growth. Therefore the coupling with the Navier-Stokes equations is difficult to handle even in two spatial dimensions because of the lack of regularity of ϕ. We establish the global existence of a weak solution. In the two-dimensional case we also prove that such a solution satisfies the energy identity and a dissipative estimate, provided that F fulfills a suitable coercivity condition.
The Cahn-Hilliard and viscous Cahn-Hilliard equations with singular and possibly nonsmooth potentials and dynamic boundary condition are considered and some well-posedness and regularity results are proved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.