We develop a method of magnetic resonance (MR) image analysis able to provide parameter(s) sensitive to bone microarchitecture changes in aging, and to osteoporosis onset and progression. The method has been built taking into account fractal properties of many anatomic and physiologic structures. Fractal lacunarity analysis has been used to determine relevant parameter(s) to differentiate among three types of trabecular bone structure (healthy young, healthy perimenopausal, and osteoporotic patients) from lumbar vertebra MR images. In particular, we propose to approximate the lacunarity function by a hyperbola model function that depends on three coefficients, alpha, beta, and gamma, and to compute these coefficients as the solution of a least squares problem. This triplet of coefficients provides a model function that better represents the variation of mass density of pixels in the image considered. Clinical application of this preliminary version of our method suggests that one of the three coefficients, beta, may represent a standard for the evaluation of trabecular bone architecture and a potentially useful parametric index for the early diagnosis of osteoporosis.
Alzheimer’s disease (AD) represents one major health concern for our growing elderly population. It accounts for increasing impairment of cognitive capacity followed by loss of executive function in late stage. AD pathogenesis is multifaceted and difficult to pinpoint, and understanding AD etiology will be critical to effectively diagnose and treat the disease. An interesting hypothesis concerning AD development postulates a cause-effect relationship between accumulation of mitochondrial DNA (mtDNA) mutations and neurodegenerative changes associated with this pathology. Here we propose a computerized method for an easy and fast mtDNA mutations-based characterization of AD. The method has been built taking into account the complexity of living being and fractal properties of many anatomic and physiologic structures, including mtDNA. Dealing with mtDNA mutations as gaps in the nucleotide sequence, fractal lacunarity appears a suitable tool to differentiate between aging and AD. Therefore, Chaos Game Representation method has been used to display DNA fractal properties after adapting the algorithm to visualize also heteroplasmic mutations. Parameter β from our fractal lacunarity method, based on hyperbola model function, has been measured to quantitatively characterize AD on the basis of mtDNA mutations. Results from this pilot study to develop the method show that fractal lacunarity parameter β of mtDNA is statistically different in AD patients when compared to age-matched controls. Fractal lacunarity analysis represents a useful tool to analyze mtDNA mutations. Lacunarity parameter β is able to characterize individual mutation profile of mitochondrial genome and appears a promising index to discriminate between AD and aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.