Nerve repair is usually accomplished by direct suture when the two stumps can be approximated without tension. In the presence of a nerve defect, the placement of an autologous nerve graft is the current gold standard for nerve restoration. However, over the last 20 years, an increasing number of research articles reported on the use of non-nervous tubes (tubulization) for repairing nerve defects. The clinical employment of tubes (both biological and synthetic) as an alternative to autogenous nerve grafts is mainly justified by the limited availability of donor tissue for nerve autografts and the related morbidity. In addition, tubulization was proposed as an alternative to direct nerve sutures in order to create optimal conditions for nerve regeneration over the short empty space intentionally left between two nerve stumps. This paper outlines recent important advances in this field. Different tubulization techniques proposed so far are described, focusing in particular on studies that reported on the employment of tubes with patients. Our personal clinical experience on tubulization repair of sensory nerve lesions (digital nerves), using both biological and synthetic tubes, is presented, and the clinical results are compared. In our case series, both types of tubes led to good clinical results. Finally, we speculate about the prospects in the clinical application of tubulization for peripheral nerve repair.
Experimental investigation of peripheral nerve fiber regeneration is attracting more and more attention among both basic and clinical researchers. Assessment of myelinated nerve fiber morphology is a pillar of peripheral nerve regeneration research. The gold standard for light microscopic imaging of myelinated nerve fibers is toluidine blue staining of resin-embedded semithin sections. However, many researchers are unaware that the dark staining of myelin sheaths typically produced by this procedure is due to osmium tetroxide postfixation and not due to toluidine blue. In this article, we describe a simple pre-embedding protocol for staining myelin sheaths in paraffin-embedded nerve specimens using osmium tetroxide. The method involves immersing the specimen in 2% osmium tetroxide for 2 h after paraformaldehyde fixation, followed by routine dehydration and paraffin embedding. Sections can then be observed directly under the microscope or counterstained using routine histological methods. Particularly good results were obtained with Masson's trichrome counterstain, which permits the imaging of connective structures in nerves that are not detectable in toluidine blue-stained resin sections. Finally, we describe a simple protocol for osmium etching of sections, which makes further immunohistochemical analysis possible on the same specimens. Taken together, our results suggest that the protocol described in this article is a valid alternative to the conventional resin embedding-based protocol: it is much cheaper, can be adopted by any histological laboratory, and allows immunohistochemical analysis to be conducted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.