At a single-molecule level, fluorophore emission intensity fluctuates between bright and dark states. These fluctuations, known as blinking, limit the use of fluorophores in single-molecule experiments. The dark-state duration shows a universal heavy-tailed power-law distribution characterized by the occurrence of long non-emissive periods. Here we have synthesized novel CdSe-CdS core-shell quantum dots with thick crystalline shells, 68% of which do not blink when observed individually at 33 Hz for 5 min. We have established a direct correlation between shell thickness and blinking occurrences. Importantly, the statistics of dark periods that appear at high acquisition rates (1 kHz) are not heavy tailed, in striking contrast with previous observations. Blinking statistics are thus not as universal as thought so far. We anticipate that our results will help to better understand the physico-chemistry of single-fluorophore emission and rationalize the design of other fluorophores that do not blink.
We present the synthesis and the optical properties of a new type of two-dimensional heterostructure: core/crown CdSe/CdS nanoplatelets. They consist of CdSe nanoplatelets that are extended laterally with CdS. Both the CdSe core and the CdS crown dimensions can be controlled. Their thickness is controlled at the monolayer level. These novel nanoplatelet-based heterostructures have spectroscopic properties that can be similar to nanoplatelets or closer to quantum dots, depending on the CdSe core lateral size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.