The advent of novel measurement instrumentation can lead to paradigm shifts in scientific research. Optical atomic clocks, due to their unprecedented stability 1,2,3 and uncertainty, 4,5,6,7 are already being used to test physical theories 8,9 and herald a revision of the International System of units (SI). 10,11 However, to unlock their potential for cross-disciplinary applications such as relativistic geodesy, 12 a major challenge remains. This is their transformation from highly specialized instruments restricted to national metrology laboratories into flexible devices deployable in different locations. 13,14,15 Here we report the first field measurement campaign performed with a ubiquitously applicable 87 Sr optical lattice clock. 13 We use it to determine the gravity potential difference between the middle of a mountain and a location 90 km apart, exploiting both local and remote clock comparisons to eliminate potential clock errors. A local comparison with a 171 Yb lattice clock 16 also serves as an important check on the international consistency of independently developed optical clocks. This campaign demonstrates the exciting prospects for transportable optical clocks.The application of clocks in geodesy fulfils long-standing proposals to interpret a measurement of the fractional relativistic redshift Δνrel/ν0 to determine the gravity potential difference ΔU = c 2 Δνrel/ν0 between clocks at two sites (c being the speed of light). 12 National geodetic height systems based on classical terrestrial and satellite-based measurements exhibit discrepancies at the decimetre level. 17 Optical clocks, combined with high performance frequency dissemination techniques 18,19 offer an attractive way to resolve these discrepancies, as they combine the advantage of high spectral resolution with small error accumulation over long distances. 18,20 However, to achieve competitive capability requires high clock performance: a fractional frequency accuracy of 1×10 17 corresponds to a resolution of about 10 cm in height. Furthermore, it is important to realize that the sideby-side frequency ratio has to be known to determine the remote frequency shift Δνrel. Taking the uncertainty budgets of optical clocks for granted, harbours the possibility of errors, because very few have been verified experimentally to the low 10 17 region or beyond. 5,7,18,21 A transportable optical clock not only increases the flexibility in measurement sites but mitigates the risk of undetected errors by enabling local calibrations to be performed.The test site chosen for our demonstration of chronometric levelling 12 with optical clocks was the Laboratoire Souterrain de Modane (LSM) in France, with the Italian metrology institute INRIM in Torino serving as the reference site. The height difference between the two sites is approximately 1000 m, corresponding to a fractional redshift of about 10 -13 . From a geodetic point of view, LSM is a challenging and interesting location in which to perform such measurements: firstly, it is located in the middl...
We report the absolute frequency measurement of the unperturbed optical clock transition 1S0–3P0 in 171Yb performed with an optical lattice frequency standard. Traceability to the International System of Units is provided by a link to International Atomic Time. The measurement result is 518 295 836 590 863.61(13) Hz with a relative standard uncertainty of , obtained operating our 171Yb optical frequency standard intermittently for 5 months. The 171Yb optical frequency standard contributes with a systematic uncertainty of .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.