In this work, a parallel three-dimensional solver for numerical simulations in computational electrocardiology is introduced and studied. The solver is based on the anisotropic Bidomain cardiac model, consisting of a system of two degenerate parabolic reaction–diffusion equations describing the intra and extracellular potentials of the myocardial tissue. This model includes intramural fiber rotation and anisotropic conductivity coefficients that can be fully orthotropic or axially symmetric around the fiber direction. The solver also includes the simpler anisotropic Monodomain model, consisting of only one reaction–diffusion equation. These cardiac models are coupled with a membrane model for the ionic currents, consisting of a system of ordinary differential equations that can vary from the simple FitzHugh–Nagumo (FHN) model to the more complex phase-I Luo–Rudy model (LR1). The solver employs structured isoparametric Q1finite elements in space and a semi-implicit adaptive method in time. Parallelization and portability are based on the PETSc parallel library. Large-scale computations with up to O(107) unknowns have been run on parallel computers, simulating excitation and repolarization phenomena in three-dimensional domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.