The purpose of this study was to evaluate the acute and long-term effects of local high-intensity vibration (HLV, f = 300 Hz) on muscle performance and blood hormone concentrations in healthy young men. Totally 18 subjects (cV group) were studied in two sessions, either without (control) or with HLV treatment. The protocol was the same on both control and test days, except that, in the second session, subjects underwent HLV treatment. Counter-movement jumping (CMJ), maximal isometric voluntary contraction (MVC) test, and hormonal levels were measured before the procedure, immediately thereafter, and 1 h later. To assess the long-term effects of HLV, the cV group was subjected to HLV on the leg muscles for 4 weeks, and a second group (cR group, n = 18) embarked upon a resistance training program. All subjects underwent an MVC test and an isokinetic (100 deg/s) test before training, 4 weeks after training, and 2 months after the end of training. The HLV protocol significantly increased the serum level of growth hormone (GH, P < 0.05) and creatine phosphokinase (CPK, P < 0.05), and decreased the level of cortisol (P < 0.05). None of GH, CPK or testosterone levels were altered in controls. There was a significant improvement in MVC (P < 0.05). After 4 weeks, both the cV and cR groups demonstrated significant improvement in MVC and isokinetic tests (P < 0.05). This increase persisted for at least 2 months. Our results indicate that HLV influences the levels of particular hormones and improves neuromuscular performance. Our results indicate that HLV has a long-term beneficial effect comparable to that of resistance training.
In aging, there is a gradual decrease in muscle mass (sarcopenia) and muscle strength which contributes to a decline in physical functions, increased disability, frailty, and loss of independence. Physical activity can reduce functional decline due to aging. Randomized controlled trials (RCT) are needed to determine the effectiveness of different exercise stimuli on muscle strength and balance in the sarcopenic elderly. Forty male volunteers diagnosed with sarcopenia (CDCP) (70.9±5.2yrs) were enrolled in this study. A randomized, controlled trial, with blind assessment, was designed to study the effect of global sensorimotor, high intensity focused vibrational (intensity: 300Hz) and resistance training (intensity: 60-80% of maximum theoretical force, 10-12 repetitions for 3 sets) stimuli on muscle strength and balance confidence. The subjects were randomly assigned to three different training programs or a control group which was encouraged to maintain their habitual activity level. The training was performed for 12 weeks in all groups: 2 sessions/week in Gsm and Ret groups; 1 session/week for the first 8 weeks and 3 sessions/week for the last 4 weeks in Yam group. The main outcome was maximal force contraction of the lower limbs, and secondary outcomes were static and dynamic balance confidence. All the training regimens increased isometric strength. Both the sensorimotor and the vibrational training increased stability with a reduction of sway area and of ellipse surface (p
Although an increasing interest in vision training for sport performance, whether it may have a transfer to sport-specific skills and whether such transfer could be mediated by cognition remain open issues. To enlighten this point, we tested the effect of 6-weeks sport vision training programmes (requiring generic or volleyball-specific motor actions) in non-sport-specific context compared to a third group performing traditional volleyball training in sport-specific context. Fifty-one female volleyball players were randomly assigned to one of three groups. Before and after training period subjects were tested on accuracy of volleyball-specific skills and cognitive performance (clinical reaction time, executive control, perceptual speed). Accuracy of volleyball-specific skills improved after traditional volleyball training with respect to the vision training groups. Conversely, vision training groups improved cognitive performance (clinical reaction time, executive control and perceptual speed), as compared to traditional volleyball training group. Our results have shown that vision training in non-sport-specific context (both generic or with specific motor actions) improved cognitive performance, but seems to be less effective for improving sport-specific skills. These evidences suggest that environment in which exercises were performed plays a key role to improve perception and action in sport-specific skills, supporting the ecological approach to sport learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.