The nuclear symmetry energy, together with the other saturation properties of symmetric nuclear matter, plays an important role in low energy nuclear structure of terrestrial systems, as well as astrophysical objects. In particular, its density dependence, both in sub- and supra-saturation regions in high density matter in neutron stars, is of utmost significance and has been a subject of active research for decades, usually within a mean-field framework. We report results obtained using the latest version of Quark-Meson-Coupling Model (QMC-A) with just three variable parameters, the baryon-meson coupling constants in free space. It is shown that these parameters can be determined directly using nuclear matter (NM) properties at saturation; two parameters of symmetric nuclear matter (SNM), the baryon number density and the energy per particle, and the symmetry energy coefficient of asymmetric nuclear matter (ANM). The effects of uncertainties in the these parameters and propagation of these uncertainties through the calculation of properties of dense hyperonic matter and cold neutron stars are demonstrated. This approach leads to new limits on both the NM parameters and the QMC coupling constants. The results, which exploit the unique features of the QMC model, are discussed and future prospects are outlined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.