Homogeneous olefin oligomerization plays a pivotai role in the field of petrochemistry. Through catalysts, technology and process developments, market requirements in terms of productivity, selectivity and sustainability have been addressed. Over more than 50 years, an intensive research has been devoted to the design of new Group 4 to Group 10 transition metal complexes and to the study of their reactivity towards olefins leading to severa! breakthroughs of prime importance for academy as for industry. Since the early sixties, IFPEN contributed to bring innovative industrial solutions to different targets from gasoline production to alpha-olefin on purpose processes with over 100 production units built worldwide . Based on nickel, titanium, zirconium or chromium, the catalytic systems for such processes and their next generation are subject to a continuous research where the adaptation of the ligand architecture to the nature of the metal and its mode of activation, play a crucial role to control the reaction selectivity and the catalyst lifetime. lnteresting relationships between the complex structure and their reactivity have been drawn and will be discussed on selected examples.
Brought to life more than half a century ago and successfully applied for high-value petrochemical intermediates production, nickel-catalyzed olefin oligomerization is still a very dynamic topic, with many fundamental questions to address and industrial challenges to overcome. The unique and versatile reactivity of nickel enables the oligomerization of ethylene, propylene and butenes into a wide range of oligomers that are highly sought-after in numerous fields to be controlled. Interestingly, both homogeneous and heterogeneous nickel catalysts have been scrutinized and employed to do this. This rare specificity encouraged us to interlink them in this review so as to open up opportunities for further catalyst development and innovation. An in-depth understanding of the reaction mechanisms in play is essential to being able to fine-tune the selectivity and achieve efficiency in the rational design of novel catalytic systems. This review thus provides a complete overview of the subject, compiling the main fundamental/industrial milestones and remaining challenges facing homogeneous/heterogeneous approaches as well as emerging catalytic concepts, with a focus on the last 10 years.
H bonds make the catalysts! A single hydrogen bond between ligands coordinated to a rhodium center is critical for the formation of pure supramolecular catalysts for asymmetric hydrogenation reactions. The ester group of the amidite ligand (see scheme) also forms a hydrogen bond with the coordinated substrate. Use of the heterocomplex afforded the highest enantioselectivity reported to date for the hydrogenation of several ester substrates.
Sulfonamido-phosphoramidite ligands lead to the formation of Rh-Rh dinuclear complexes through the anionic P-N(-) bridging character. The resulting "boat-shaped" dinuclear catalysts activate molecular H(2) through a cooperative dinuclear endocyclic mechanism, resulting in one bridging and one classical hydride on the dinuclear complex. These new complexes are very active hydrogenation catalysts that operate via a new cooperative hydrogenation activation mechanism, as calculated with density functional theory, and they display unequaled high selectivities in the hydrogenation of hindered cyclic acetamidoalkenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.