Cross fields are auxiliary in the generation of quadrangular meshes. A method to generate cross fields on surface manifolds is presented in this paper. Algebraic topology constraints on quadrangular meshes are first discussed. The duality between quadrangular meshes and cross fields is then outlined, and a generalization to cross fields of the Poincaré-Hopf theorem is proposed, which highlights some fundamental and important topological constraints on cross fields. A finite element formulation for the computation of cross fields is then presented, which is based on Ginzburg-Landau equations and makes use of edge-based Crouzeix-Raviart interpolation functions. It is first presented in the planar case, and then extended to a general surface manifold. Finally, application examples are solved and discussed.
Triangulations are an ubiquitous input for the finite element community. However, most raw triangulations obtained by imaging techniques are unsuitable as-is for finite element analysis. In this paper, we give a robust pipeline for handling those triangulations, based on the computation of a one-to-one parametrization for automatically selected patches of input triangles, which makes each patch amenable to remeshing by standard finite element meshing algorithms. Using only geometrical arguments, we prove that a discrete parametrization of a patch is one-to-one if (and only if) its image in the parameter space is such that all parametric triangles have a positive area. We then derive a non-standard linear discretization scheme based on mean value coordinates to compute such one-toone parametrizations, and show that the scheme does not discretize a Laplacian on a structured mesh. The proposed pipeline is implemented in the open source mesh generator Gmsh, where the creation of suitable patches is based on triangulation topology and parametrization quality, combined with feature edge detection. Several examples illustrate the robustness of the resulting implementation.
Figure 1: Three example models of HexMe (https://hexme.algohex.eu): The tetrahedral meshes faithfully represent feature points, curves (depicted in blue), and surfaces of the underlying CAD primitives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.