Holography is a technique that is used to display objects or scenes in three dimensions. Such three-dimensional (3D) images, or holograms, can be seen with the unassisted eye and are very similar to how humans see the actual environment surrounding them. The concept of 3D telepresence, a real-time dynamic hologram depicting a scene occurring in a different location, has attracted considerable public interest since it was depicted in the original Star Wars film in 1977. However, the lack of sufficient computational power to produce realistic computer-generated holograms and the absence of large-area and dynamically updatable holographic recording media have prevented realization of the concept. Here we use a holographic stereographic technique and a photorefractive polymer material as the recording medium to demonstrate a holographic display that can refresh images every two seconds. A 50 Hz nanosecond pulsed laser is used to write the holographic pixels. Multicoloured holographic 3D images are produced by using angular multiplexing, and the full parallax display employs spatial multiplexing. 3D telepresence is demonstrated by taking multiple images from one location and transmitting the information via Ethernet to another location where the hologram is printed with the quasi-real-time dynamic 3D display. Further improvements could bring applications in telemedicine, prototyping, advertising, updatable 3D maps and entertainment.
The optical and photoconductive fatigue of fast photorefractive polymers have been studied in a family of C 60-sensitized polymer composites containing styrene-based chromophores with varying ionization potential. Changes in response time and in photoconductivity were studied for exposures up to 10 4 J/cm 2. Increasing the chromophore ionization potential beyond that of the polyvinylcarbazole host was found to stabilize the response time. Studies of the electric-field dependence of the steady-state diffraction efficiency in various samples confirm the role of C 60 anions as possible traps.
This review describes the current state-of-the-art of photorefractive polymers for holography. The analysis of this rich field begins with a brief historical perspective followed by descriptions of prevailing physical models relating basic parameters of the polymer constituents to the bulk response of the final device. Methods for probing these responses and the underlying phenomena are discussed followed by an overview of the recent holographic applications of photorefractive polymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.