The backstepping approach is adapted to the problem of globally uniformly asymptotically stabilizing nonlinear systems in feedback form with a delay arbitrarily large in the input. The strategy of design relies on the construction of a Lyapunov-Krasovskii functional. Continuously differentiable control laws are constructed.
In this paper, we propose a sex-structured entomological model that serves as a basis for design of control strategies relying on releases of sterile male mosquitoes (Aedes spp) and aiming at elimination of the wild vector population in some target locality. We consider different types of releases (constant and periodic impulsive), providing necessary conditions to reach elimination. However, the main part of the paper is focused on the study of the periodic impulsive control in different situations. When the size of wild mosquito population cannot be assessed in real time, we propose the so-called open-loop control strategy that relies on periodic impulsive releases of sterile males with constant release size. Under this control mode, global convergence towards the mosquito-free equilibrium is proved on the grounds of sufficient condition that relates the size and frequency of releases. If periodic assessments (either synchronized with releases or more sparse) of the wild population size are available in real time, we propose the so-called closed-loop control strategy, which is adjustable in accordance with reliable estimations of the wild population sizes. Under this control mode, global convergence to the mosquitofree equilibrium is proved on the grounds of another sufficient condition that relates not only the size and frequency of periodic releases but also the frequency of sparse measurements taken on wild populations. Finally, we propose a mixed control strategy that combines open-loop and closed-loop strategies. This control mode renders the best result, in terms of overall time needed to reach elimination and the number of releases to be effectively carried out during the whole release campaign, while requiring for a reasonable amount of released sterile insects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.