Writing Committee for the REMAP-CAP Investigators IMPORTANCE The evidence for benefit of convalescent plasma for critically ill patients with COVID-19 is inconclusive.OBJECTIVE To determine whether convalescent plasma would improve outcomes for critically ill adults with COVID-19. DESIGN, SETTING, AND PARTICIPANTSThe ongoing Randomized, Embedded, Multifactorial, Adaptive Platform Trial for Community-Acquired Pneumonia (REMAP-CAP) enrolled and randomized 4763 adults with suspected or confirmed COVID-19 between March 9, 2020, and January 18, 2021, within at least 1 domain; 2011 critically ill adults were randomized to open-label interventions in the immunoglobulin domain at 129 sites in 4 countries. Follow-up ended on April 19, 2021. INTERVENTIONSThe immunoglobulin domain randomized participants to receive 2 units of high-titer, ABO-compatible convalescent plasma (total volume of 550 mL ± 150 mL) within 48 hours of randomization (n = 1084) or no convalescent plasma (n = 916). MAIN OUTCOMES AND MEASURESThe primary ordinal end point was organ support-free days (days alive and free of intensive care unit-based organ support) up to day 21 (range, −1 to 21 days; patients who died were assigned -1 day). The primary analysis was an adjusted bayesian cumulative logistic model. Superiority was defined as the posterior probability of an odds ratio (OR) greater than 1 (threshold for trial conclusion of superiority >99%). Futility was defined as the posterior probability of an OR less than 1.2 (threshold for trial conclusion of futility >95%). An OR greater than 1 represented improved survival, more organ support-free days, or both. The prespecified secondary outcomes included in-hospital survival; 28-day survival; 90-day survival; respiratory support-free days; cardiovascular support-free days; progression to invasive mechanical ventilation, extracorporeal mechanical oxygenation, or death; intensive care unit length of stay; hospital length of stay; World Health Organization ordinal scale score at day 14; venous thromboembolic events at 90 days; and serious adverse events. RESULTS Among the 2011 participants who were randomized (median age, 61 [IQR, 52 to 70] years and 645/1998 [32.3%] women), 1990 (99%) completed the trial. The convalescent plasma intervention was stopped after the prespecified criterion for futility was met. The median number of organ support-free days was 0 (IQR, -1 to 16) in the convalescent plasma group and 3 (IQR, -1 to 16) in the no convalescent plasma group. The in-hospital mortality rate was 37.3% (401/1075) for the convalescent plasma group and 38.4% (347/904) for the no convalescent plasma group and the median number of days alive and free of organ support was 14 (IQR, 3 to 18) and 14 (IQR, 7 to 18), respectively. The median-adjusted OR was 0.97 (95% credible interval, 0.83 to 1.15) and the posterior probability of futility (OR <1.2) was 99.4% for the convalescent plasma group compared with the no convalescent plasma group. The treatment effects were consistent across the primary outcome and the 11...
In the context of recurrent maternal infection, transmission of CMV in utero and during early postnatal life is associated with excretion of the virus in colostrum and the genital tract.
IMPORTANCEThe efficacy of antiplatelet therapy in critically ill patients with COVID-19 is uncertain.OBJECTIVE To determine whether antiplatelet therapy improves outcomes for critically ill adults with COVID-19. DESIGN, SETTING, AND PARTICIPANTSIn an ongoing adaptive platform trial (REMAP-CAP) testing multiple interventions within multiple therapeutic domains, 1557 critically ill adult patients with COVID-19 were enrolled between October 30, 2020, and June 23, 2021, from 105 sites in 8 countries and followed up for 90 days (final follow-up date: July 26, 2021).INTERVENTIONS Patients were randomized to receive either open-label aspirin (n = 565), a P2Y12 inhibitor (n = 455), or no antiplatelet therapy (control; n = 529). Interventions were continued in the hospital for a maximum of 14 days and were in addition to anticoagulation thromboprophylaxis. MAIN OUTCOMES AND MEASURESThe primary end point was organ support-free days (days alive and free of intensive care unit-based respiratory or cardiovascular organ support) within 21 days, ranging from −1 for any death in hospital (censored at 90 days) to 22 for survivors with no organ support. There were 13 secondary outcomes, including survival to discharge and major bleeding to 14 days. The primary analysis was a bayesian cumulative logistic model. An odds ratio (OR) greater than 1 represented improved survival, more organ support-free days, or both. Efficacy was defined as greater than 99% posterior probability of an OR greater than 1. Futility was defined as greater than 95% posterior probability of an OR less than 1.2 vs control. Intervention equivalence was defined as greater than 90% probability that the OR (compared with each other) was between 1/1.2 and 1.2 for 2 noncontrol interventions. RESULTSThe aspirin and P2Y12 inhibitor groups met the predefined criteria for equivalence at an adaptive analysis and were statistically pooled for further analysis. Enrollment was discontinued after the prespecified criterion for futility was met for the pooled antiplatelet group compared with control. Among the 1557 critically ill patients randomized, 8 patients withdrew consent and 1549 completed the trial (median age, 57 years; 521 [33.6%] female). The median for organ support-free days was 7 (IQR, −1 to 16) in both the antiplatelet and control groups (median-adjusted OR, 1.02 [95% credible interval {CrI}, 0.86-1.23]; 95.7% posterior probability of futility). The proportions of patients surviving to hospital discharge were 71.5% (723/1011) and 67.9% (354/521) in the antiplatelet and control groups, respectively (median-adjusted OR, 1.27 [95% CrI, 0.99-1.62]; adjusted absolute difference, 5% [95% CrI, −0.2% to 9.5%]; 97% posterior probability of efficacy). Among survivors, the median for organ support-free days was 14 in both groups. Major bleeding occurred in 2.1% and 0.4% of patients in the antiplatelet and control groups (adjusted OR, 2.97 [95% CrI,; adjusted absolute risk increase, 0.8% [95% CrI, 0.1%-2.7%]; 99.4% probability of harm).CONCLUSIONS AND RELEVANCE Among crit...
Human CMV establishes lifelong persistence after primary infection. Chronic CMV infection is associated with intermittent viral reactivation inducing high frequencies of CD4+ T lymphocytes with potent antiviral and helper properties. Primary CMV infection is characterized by an intense viral replication lasting for several months. The impact of this prolonged exposure to high Ag loads on the functionality of CD4+ T cells remains incompletely understood. In pregnant women with primary CMV infection, we observed that CMV-specific CD4+ T lymphocytes had a decreased capacity to proliferate and to produce IL-2. A very large proportion of CMV-specific CD4+ T cells had downregulated the expression of CD28, a costimulatory molecule centrally involved in the production of IL-2. Unexpectedly, both CD28− and CD28+CD4+ T cells produced low levels of IL-2. This defective production of IL-2 was part of a larger downregulation of cytokine production. Indeed, CMV-specific CD4+ T cells produced lower amounts of IFN-γ and TNF-α and showed lower functional avidity during primary as compared with chronic infection. Increased programmed death-1 expression was observed in CD28+ CMV-specific CD4+ T cells, and programmed death-1 inhibition increased proliferative responses. These results indicate that primary CMV infection is associated with the exhaustion of CMV-specific CD4+ T cells displaying low functional avidity for viral Ags.
We examined the effect of insulin on nuclear factor B (NF-B) activity in Chinese hamster ovary (CHO) cells overexpressing wild-type (CHO-R cells) or -defective insulin receptors mutated at Tyr 1162 and Tyr 1163 autophosphorylation sites (CHO-Y2 cells). In CHO-R cells, insulin caused a specific, time-, and concentration-dependent activation of NF-B. The insulin-induced DNA-binding complex was identified as the p50/p65 heterodimer. Insulin activation of NF-B: 1) was related to insulin receptor number and tyrosine kinase activity since it was markedly reduced in parental CHO cells which proved to respond to insulin growth factor-1 and phorbol 12-myristate 13-acetate (PMA) activation, and was dramatically decreased in CHO-Y2 cells; 2) persisted in the presence of cycloheximide and was blocked by pyrrolidine dithiocarbamate, aspirin and sodium salicylate, three compounds interfering with IB degradation and/or NF-B⅐IB complex dissociation; 3) was independent of both PMA-sensitive and atypical () protein kinases C; and 4) was dependent on Raf-1 kinase activity since insulinstimulated NF-B DNA binding activity was inhibited by 8-bromo-cAMP, a Raf-1 kinase inhibitor. Moreover, insulin activation of NF-B-driven luciferase reporter gene expression was blocked in CHO-R cells expressing a Raf-1 dominant negative mutant. This is the first evidence that insulin activates NF-B in mammalian cells through a post-translational mechanism requiring both insulin receptor tyrosine kinase and Raf-1 kinase activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.