A novel Rayleigh-Schrödinger many-body perturbation theory (MBPT) approach is introduced by making use of a particle-number-breaking Bogoliubov reference state to tackle (near-)degenerate open-shell fermionic systems. By choosing a reference state that solves the Hartree-Fock-Bogoliubov variational problem, the approach reduces to the well-tested Møller-Plesset, i.e., Hartree-Fock based, MBPT when applied to closed-shell systems. Due to its algorithmic simplicity, the newly developed framework provides a computationally simple yet accurate alternative to state-of-the-art non-perturbative many-body approaches. At the price of working in the quasi-particle basis associated with a single-particle basis of sufficient size, the computational scaling of the method is independent of the particle number. This paper presents the first realistic applications of the method ranging from the oxygen to the nickel isotopic chains on the basis of a modern nuclear Hamiltonian derived from chiral effective field theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.