International audienceThis contribution presents an original study combining detailed mapping, petrography, whole-rock geochemistry and geochronological constraints on the recently identified LREE (Light Rare Earth Elements) occurrences associated with pegmatitic granite dykes (PGD) from the central Grenville (Lac Okaopéo region). These PGD intrude paragneisses or meta-igneous complexes with a REE mineralization hosted either in monazite-(Ce) or in allanite-(Ce) respectively. The investigated samples display peraluminous signatures and are dominated by a quartz+K-feldspar+plagioclase+biotite+monazite/allanite assemblage. Field relationships and the magmatic textures of the dykes combined with U-Pb dating of magmatic monazite grains at 1005.4±4.4 Ma and 996.7±5.3 Ma (concordant igneous ages) imply that the LREE-rich PGD were emplaced in a post-tectonic setting. Allanite-(Ce) and monazite-(Ce)-bearing PGD have ΣREE contents up to 9242 ppm and 7048 ppm, respectively. The allanite-rich assemblage is consistent with the petrographic assemblage of LREE-enriched PGD identified in the southwestern Grenville Province and elsewhere in the world, but this study constitutes the first evidence for a sole presence of monazite as LREE-bearing phase in strongly peraluminous PGD from the Grenville Province
This contribution explores the petrogenetic relationships between silicate and carbonatitic rocks in the Crevier Alkaline Intrusion (CAI, Québec, Canada). The CAI is located in the Proterozoic Grenville Province and is composed of a suite of undersaturated peralkaline rocks from ijolite to nepheline syenite and carbonatites. Petrogenetic relationships between different undersaturated alkaline igneous rocks, carbonate-bearing and carbonate-free nepheline syenite and carbonatites observed in the CAI suggest that (i) carbonate-bearing and carbonate-free silicate rocks are comagmatic with carbonatite, and that (ii) both silicate and carbonatitic liquids are fractionated from an ijolitic parental magma that has undergone liquid immiscibility. One of the observed facies is characterized by spectacular ocelli of carbonate-bearing nepheline syenite in a matrix of carbonatite. The younger nepheline syenite facies can be divided into two groups based on the presence or absence of magmatic carbonates. Both groups are characterized by the presence of pyrochlore-group minerals that carry the Nb-Ta mineralization.
We specifically use accessory minerals such as zircon, pyrochlore and apatite to constrain the temporal and physicochemical parameters of the immiscibility process. By coupling (i) mineral textures, (ii) trace elements, (iii) Ti-in-zircon thermometry, and (iv) oxygen isotope compositions, we have traced the crystallization of zircon before, during and after the immiscibility process. The results allowed us to constrain the minimum temperature of this process at ∼815-865 °C. In addition, two magmatic populations of pyrochlore are identified through their petrographic and geochemical characteristics within the younger nepheline syenite facies. Pyrochlore from the earlier ocelli facies of carbonate-bearing nepheline syenite follow a Nb-Ta differentiation trend, whereas pyrochlore from the younger carbonate-free nepheline syenite follow a more classical Nb-Ti trend. Following the complete immiscibility between the silicate and carbonatitic liquids, the fractionation between Nb and Ta stopped while a new generation of Nb-rich pyrochlore grew, displaying a more classical Nb-Ti fractionation trend and a more constant Nb/Ta ratio in the nepheline syenite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.