International audienceWe consider the long-term evolution of a random nonlinear wave that propagates in a multimode optical waveguide. The optical wave exhibits a thermalization process characterized by an irreversible evolution toward an equilibrium state. The tails of the equilibrium distribution satisfy the property of energy equipartition among the modes of the waveguide. As a consequence of this thermalization, the optical field undergoes a process of classical wave condensation, which is characterized by a macroscopic occupation of the fundamental mode of the waveguide. Considering the nonlinear Schrödinger equation with a confining potential, we formulate a wave turbulence description of the random wave into the basis of the eigenmodes of the waveguide. The condensate amplitude is calculated analytically as a function of the wave energy, and it is found in quantitative agreement with the numerical simulations. The analysis reveals that the waveguide configuration introduces an effective physical frequency cutoff, which regularizes the ultraviolet catastrophe inherent to the ensemble of classical nonlinear waves. The numerical simulations have been performed in the framework of a readily accessible nonlinear fiber optics experiment
We report a simple fabrication process for realizing waveguides on periodically poled lithium niobate which preserves both the nonlinearity and the domain inversion. This so-called soft proton exchange has been used to generate highly efficient optical parametric fluorescence in the 1.48–2.01 μm region using a pump around 830 nm. The measured normalized efficiency is 130% W−1 cm−2 for an effective interaction length of 1.3 cm. This experimental figure is very close to the maximum theoretically predicted value of 140% W−1 cm−2.
One of the unique features of mirrorless optical parametric oscillators based on counterpropagating three-wave interactions is the narrow spectral width of the wave generated in the backward direction. In this work, we investigate experimentally and numerically the influence that a strong phase modulation in the pump has on the spectral bandwidths of the parametric waves and on the efficiency of the nonlinear interaction. The effects of group-velocity mismatch and group-velocity dispersion are elucidated. In particular, it is shown that the substantial increase in temporal coherence of the backward-generated wave can be obtained even for pumping with a temporally incoherent pump. A configuration of a mirrorless optical parametric oscillator is proposed where this gain in spectral coherence is maximized without a penalty in conversion efficiency by employing group-velocity matching of the pump and the forward-generated parametric wave.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.