Background:To demonstrate how adaptive hypofractionated radiosurgery by gamma knife (GK) can be successfully utilized to treat a large brainstem metastasis - a novel approach to a challenging clinical situation.Case Description:A 42-year-old woman, diagnosed with metastatic nonsmall cell lung cancer in July 2011, initially treated with chemotherapy and tyrosine kinase inhibitors, developed multiple brain metastases March 2013, with subsequent whole brain radiotherapy, after which a magnetic resonance imaging (MRI) showed a significant volume regression of all brain metastases. A follow-up MRI in October 2013 revealed a growing brainstem lesion of 26 mm. Linear accelerator-based radiotherapy and microsurgery were judged contraindicated, why the decision was made to treat the patient with three separate radiosurgical sessions during the course of 1 week, with an 18% tumor volume reduction demonstrated after the last treatment. Follow-up MRI 2.5 months after her radiosurgical treatment showed a tumor volume reduction of 67% compared to the 1st day of treatment. Later on, the patient developed a radiation-induced perilesional edema although without major clinical implications. An MRI at 12 months and 18-fluoro-deoxyglucose positron emission tomography of the brain at 13 months showed decreased edema with no signs of tumor recurrence. Despite disease progression during the last months of her life, the patient's condition remained overall acceptable.Conclusion:GK-based stereotactic adaptive hypofractionation proved to be effective to achieve tumor control while limiting local adverse reactions. This surgical modality should be considered when managing larger brain lesions in critical areas.
ObjectThis study aimed to investigate the impact of tumor hypoxia on treatment outcome for metastases commonly treated with radiosurgery using 1 fraction of radiation and the potential gain from reoxygenation if the treatment is delivered in a few radiation fractions.MethodsIn silico metastasis-like radiosurgery targets were modeled with respect to size, density of clonogenic cells, and oxygenation. Treatment plans were produced for the targets using Leksell GammaPlan, delivering clinically relevant doses and evaluating the tumor control probability (TCP) that could be expected in each case. Fractionated schedules with 3, 4, and 5 fractions resulting in similar biological effective doses were also considered for the larger target, and TCP was determined under the assumption that local reoxygenation takes place between fractions.ResultsThe results showed that well-oxygenated small- and medium-size metastases are well controlled by radiosurgery treatments delivering 20 or 22 Gy at the periphery, with TCPs ranging from 90% to 100%. If they are moderately hypoxic, the TCP could decrease to 60%. For large metastases, the TCPs from single-fraction treatments ranged from 0% to 19%, depending on tumor oxygenation. However, for fractionated treatments, the TCP for hypoxic tumors could significantly increase up to 51%, if reoxygenation occurs between fractions.ConclusionsThis study shows that hypoxia worsens the response to single-fraction radiosurgery, especially for large tumors. However, fractionated therapy for large hypoxic tumors might considerably improve the TCP and might constitute a simple way to improve the outcome of radiosurgery for patients with hypoxic tumors.
Stereotactic radiosurgery using Gamma Knife (GK) or linear accelerators has been used for decades to treat brain tumors in one fraction. A new positioning system, Extend™, was introduced by Elekta AB for fractionated stereotactic radiotherapy (SRT) with GK. Another option for fractionated SRT is advanced planning and delivery using linacs and volumetric modulated arc therapy (VMAT). This project aims to assess the performance of GK Extend™ for delivering fractionated SRT by comparing GK treatments plans for brain targets performed using Leksell GammaPlan (LGP) with VMAT treatment plans. Several targets were considered for the planning: simulated metastasis‐ and glioma‐like targets surrounding an organ at risk (OAR), as well as three clinical cases of metastases. Physical parameters such as conformity, gradient index, dose to OARs, and brain volume receiving doses above the threshold associated with risk of damaging healthy tissue, were determined and compared for the treatment plans. The results showed that GK produced better dose distributions for target volumes below 15 cm3, while VMAT results in better dose conformity to the target and lower doses to the OARs in case of fractionated treatments for large or irregular volumes. The volume receiving doses above a threshold associated with increased risk of damage to normal brain tissue was also smaller for VMAT. The GK consistently performed better than VMAT in producing a lower dose‐bath to the brain. The above is subjected only to margin‐dependent fractionated radiotherapy (CTV/PTV). The results of this study could lead to clinically significant decisions regarding the choice of the radiotherapy technique for brain targets.PACS numbers: 87.53.Ly, 87.55.D‐
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.