Detection and sizing of corrosion in pipelines and pressure vessels over large, partially accessible areas is of growing interest in the petrochemical industry. Low-frequency guided wave diffraction tomography is a potentially attractive technique to rapidly evaluate the thickness of large sections of partially accessible structures. Finite element simulations of a 64-element circular array on a plate show that when the scattering mechanism of the object to be reconstructed satisfies the Born approximation, the reconstruction of the thickness is accurate. However, the practical implementation is more challenging because the incident field is not known. This paper describes the baseline subtraction approach commonly used in structural health monitoring applications and proposes a new approach in which the measurement of the incident field is not required when using a circular array of transducers. Experimental results demonstrate that ultimately the scattering from the array of transducers is a major source of error in the tomographic reconstruction, but when there is no scattering from the array of transducers the reconstructions are very similar to the finite element simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.