Domestication of horses fundamentally transformed long-range mobility and warfare1. However, modern domesticated breeds do not descend from the earliest domestic horse lineage associated with archaeological evidence of bridling, milking and corralling2–4 at Botai, Central Asia around 3500 bc3. Other longstanding candidate regions for horse domestication, such as Iberia5 and Anatolia6, have also recently been challenged. Thus, the genetic, geographic and temporal origins of modern domestic horses have remained unknown. Here we pinpoint the Western Eurasian steppes, especially the lower Volga-Don region, as the homeland of modern domestic horses. Furthermore, we map the population changes accompanying domestication from 273 ancient horse genomes. This reveals that modern domestic horses ultimately replaced almost all other local populations as they expanded rapidly across Eurasia from about 2000 bc, synchronously with equestrian material culture, including Sintashta spoke-wheeled chariots. We find that equestrianism involved strong selection for critical locomotor and behavioural adaptations at the GSDMC and ZFPM1 genes. Our results reject the commonly held association7 between horseback riding and the massive expansion of Yamnaya steppe pastoralists into Europe around 3000 bc8,9 driving the spread of Indo-European languages10. This contrasts with the scenario in Asia where Indo-Iranian languages, chariots and horses spread together, following the early second millennium bc Sintashta culture11,12.
The transition from the Middle Paleolithic (MP) to Upper Paleolithic (UP) is marked by the replacement of late Neandertals by modern humans in Europe between 50,000 and 40,000 y ago. Châtelperronian (CP) artifact assemblages found in central France and northern Spain date to this time period. So far, it is the only such assemblage type that has yielded Neandertal remains directly associated with UP style artifacts. CP assemblages also include body ornaments, otherwise virtually unknown in the Neandertal world. However, it has been argued that instead of the CP being manufactured by Neandertals, site formation processes and layer admixture resulted in the chance association of Neanderthal remains, CP assemblages, and body ornaments. Here, we report a series of accelerator mass spectrometry radiocarbon dates on ultrafiltered bone collagen extracted from 40 well-preserved bone fragments from the late Mousterian, CP, and Protoaurignacian layers at the Grotte du Renne site (at Arcy-sur-Cure, France). Our radiocarbon results are inconsistent with the admixture hypothesis. Further, we report a direct date on the Neandertal CP skeleton from Saint-Césaire (France). This date corroborates the assignment of CP assemblages to the latest Neandertals of western Europe. Importantly, our results establish that the production of body ornaments in the CP postdates the arrival of modern humans in neighboring regions of Europe. This new behavior could therefore have been the result of cultural diffusion from modern to Neandertal groups.
The technology of the European Upper Palaeolithic yielded abundant evidence of the use of composite projectile heads, in the form of osseous points on the side of which one or several (micro)lithic elements are attached. Yet, little experimental work has been devoted to testing and assessing the parameters of use of this type of composite tips. In this paper we present a pilot experiment with replicas of Magdalenian composite spear tips, made of an antler point with one or two rows of flint backed bladelets. Two series of replicas were manufactured after the lithic and osseous record of, respectively, the Lower Magdalenian from southwest France (c. 20-18 Ky cal BP) and the Upper Magdalenian of Pincevent in the Paris Basin (c. 15-14 Ky cal BP). The 34 experimental composite heads were hafted to spears that were then shot with a spearthrower at the carcasses of two young deer. The results provide some insight into the performance characteristics of the osseous and lithic components, both in efficiency and durability. Finally, possible improvements of the experimental protocol are discussed, as well as the implications of our results for the understanding of projectile point variability in the Upper Palaeolithic
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.