Amyloid beta (Aβ) deposits in the retina of the Alzheimer’s disease (AD) eye may provide a useful diagnostic biomarker for AD. This study focused on the relationship of Aβ with macroglia and microglia, as these glial cells are hypothesized to play important roles in homeostasis and clearance of Aβ in the AD retina. Significantly higher Aβ load was found in AD compared to controls, and specifically in the mid-peripheral region. AD retina showed significantly less immunoreactivity against glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS) compared to control eyes. Immunoreactivity against ionized calcium binding adapter molecule-1 (IBA-1), a microglial marker, demonstrated a higher level of microgliosis in AD compared to control retina. Within AD retina, more IBA-1 immunoreactivity was present in the mid-peripheral retina, which contained more Aβ than the central AD retina. GFAP co-localized rarely with Aβ, while IBA-1 co-localized with Aβ in more layers of control than AD donor retina. These results suggest that dysfunction of the Müller and microglial cells may be key features of the AD retina.
Study objectives
As cannabis is increasingly used to treat sleep disorders, we performed a systematic review to examine the effects of cannabis on sleep and to guide cannabis prescribers in their recommendations to patients, specifically focusing on dosing.
Methods
We searched EMBASE, Medline, and Web of Science and identified 4550 studies for screening. Five hundred sixty-eight studies were selected for full-text review and 31 were included for analysis. Study results were considered positive based on improvements in sleep architecture or subjective sleep quality. Bias in randomized controlled trials was assessed using Cochrane Risk of Bias tool 2.0.
Results
Sleep improvements were seen in 7 out of 19 randomized studies and in 7 out of 12 uncontrolled trials. There were no significant differences between the effects of tetrahydrocannabinol and cannabidiol. Cannabis showed most promise at improving sleep in patients with pain-related disorders, as compared to those with neurologic, psychiatric, or sleep disorders, and showed no significant effects on healthy participants’ sleep. While subjective improvements in sleep quality were often observed, diagnostic testing showed no improvements in sleep architecture. Adverse events included headaches, sedation, and dizziness, and occurred more frequently at higher doses, though no serious adverse events were observed.
Conclusion
High-quality evidence to support cannabis use for sleep remains limited. Heterogeneity in cannabis types, doses, timing of administration, and sleep outcome measures limit the ability to make specific dosing recommendations.
Microphthalmia, anophthalmia, and coloboma (MAC) are a heterogeneous spectrum of anomalous eye development and degeneration with genetic and environmental etiologies. Structural and copy number variants of chromosome 13 have been implicated in MAC; however, the specific loci involved in disease pathogenesis have not been well‐defined. Herein we report a newborn with syndromic degenerative anophthalmia and a complex de novo rearrangement of chromosome 13q. Long‐read genome sequencing improved the resolution and clinical interpretation of a duplication–triplication/inversion–duplication (DUP‐TRP/INV‐DUP) and terminal deletion. Sequence features at the breakpoint junctions suggested microhomology‐mediated break‐induced replication (MMBIR) of the maternal chromosome as the origin. Comparing this rearrangement to previously reported copy number alterations in 13q, we refine a putative dosage‐sensitive critical region for MAC that might provide new insights into its molecular etiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.