Ideal vaccines should be stable, safe, molecularly defined, and out-of-shelf reagents efficient at triggering effector and memory Ag-specific T cell-based immune responses. Dendritic cell-derived exosomes could be considered as novel peptide-based vaccines because exosomes harbor a discrete set of proteins, bear functional MHC class I and II molecules that can be loaded with synthetic peptides of choice, and are stable reagents that were safely used in pioneering phase I studies. However, we showed in part I that exosomes are efficient to promote primary MHC class I-restricted effector CD8+ T cell responses only when transferred onto mature DC in vivo. In this work, we bring evidence that among the clinically available reagents, Toll-like receptor 3 and 9 ligands are elective adjuvants capable of triggering efficient MHC-restricted CD8+ T cell responses when combined to exosomes. Exosome immunogenicity across species allowed to verify the efficacy of good manufactory procedures-manufactured human exosomes admixed with CpG oligonucleotides in prophylactic and therapeutic settings of melanoma in HLA-A2 transgenic mice. CpG adjuvants appear to be ideal adjuvants for exosome-based cancer vaccines.
Perioperative imaging with indocyanine green (ICG) is developing to increase safety in dissecting anatomical structures during hepatobiliary surgery. Images obtained with the fluorescence camera rely on concentrations measured in liver regions of interest. However, how ICG sinusoidal uptake and hepatocyte elimination rates generate ICG hepatocyte concentrations is largely unknown. To investigate such issue and better understand the role of membrane transporters in generating ICG hepatocyte concentrations, we perfused ICG in livers isolated from normal livers. Whether the well-known transporter inhibitor rifampicin modifies hepatocyte ICG concentrations was also studied. The dye has a very high and constant extraction ratio (96%) into hepatocytes. This persistent high extraction ratio generates a huge uphill concentration gradient across the sinusoidal membrane: from 5 μM (sinusoids) to 1600 μM (liver). When inside hepatocytes, ICG has low hepatocyte elimination (7 nmol/min.) and liver concentrations do not decrease much over time. Moreover, the tiny hepatocyte ICG efflux is mainly due to ICG return back to sinusoids (90%). Rifampicin slightly inhibits ICG uptake into hepatocytes and when inside hepatocytes blocks ICG efflux into bile canaliculi. In contrast, it increases ICG efflux back to sinusoids with significant decrease in ICG liver concentrations. Imaging with ICG in the perioperative period reflects the high hepatocyte concentrations and relies on the high extraction ratio across hepatocyte sinusoidal membrane. Although ICG concentrations are low in bile ducts, they are adequate for a good visualization and avoid bile duct injury.
In the liver, several approaches are used to investigate and predict the complex issue of drug-induced transporter inhibition. These approaches include in vitro assays and pharmacokinetic models that predict how inhibitors modify the systemic and liver concentrations of the victim drugs. Imaging is another approach that shows how inhibitors might alter liver concentrations stronger than systemic concentrations. In perfused rat livers associated with a gamma counter that measures liver concentrations continuously, we previously showed how fluxes across transporters generate the hepatocyte concentrations of two clinical imaging compounds, one with a low extraction ratio [gadobenate dimeglumine (BOPTA)] and one with a high extraction ratio [mebrofenin (MEB)]. BOPTA and MEB are transported by rat organic anion transporting polypeptide and multiple resistance-associated protein 2, which are both inhibited by rifampicin. The aim of the study is to measure how rifampicin modifies the hepatocyte concentrations and membrane clearances of BOPTA and MEB and to determine whether these compounds might be used to investigate transporter-mediated drug-drug interactions in clinical studies. We show that rifampicin coperfusion greatly decreases BOPTA hepatocyte concentrations, but increases those of MEB. Rifampicin strongly decreases BOPTA hepatic clearance. In contrast, rifampicin decreases moderately MEB hepatic clearance and blocks the biliary intrinsic clearance, increasing MEB hepatocyte concentrations. In conclusion, low concentrations prevent the quantification of BOPTA biliary intrinsic clearance, while MEB is a promising imaging probe substrate to evidence transporter-mediated drug-drug interactions when inhibitors act on influx and efflux transporters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.