E l e c t r o n i c J o u r n a l o f P r o b a b i l i t y Electron.
AbstractWe introduce a set of tools which simplify and streamline the proofs of limit theorems concerning near-critical particles in branching random walks under optimal assumptions. We exemplify our method by giving another proof of the Seneta-Heyde norming for the critical additive martingale, initially due to Aïdékon and Shi. The method involves in particular the replacement of certain second moment estimates by truncated first moment bounds, and the replacement of ballot-type theorems for random walks by estimates coming from an explicit expression for the potential kernel of random walks killed below the origin. Of independent interest might be a short, self-contained proof of this expression, as well as a criterion for convergence in probability of non-negative random variables in terms of conditional Laplace transforms.
We consider branching random walks with a spine in the domain of attraction of an α-stable Lévy process. For this process, the classical derivative martingale in general degenerates in the limit. We first determine the quantity replacing the derivative martingale and show that it converges to a non-degenerate limit under a certain L log L-type condition which we assume to be optimal. We go on to give the Seneta-Heyde norming for the critical additive martingale under the same assumptions. The proofs are based on the methods introduced in our previous paper which considered the finite variance case [Boutaud and Maillard (2019), EJP, vol. 24, paper no. 99].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.