Statins [3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors] exert cholesterol-independent pleiotropic effects that include anti-thrombotic, anti-inflammatory, and antioxidative properties. Here, we examined direct protective effects of atorvastatin on neurones in different cell damage models in vitro. Primary cortical neurones were pre-treated with atorvastatin and then exposed to (i) glutamate, (ii) oxygenglucose deprivation or (iii) several apoptosis-inducing compounds. Atorvastatin significantly protected from glutamate-induced excitotoxicity as evidenced by propidium iodide staining, nuclear morphology, release of lactate dehydrogenase, and mitochondrial tetrazolium metabolism, but not from oxygen-glucose deprivation or apoptotic cell death. This antiexcitototoxic effect was evident with 2-4 days pre-treatment but not with daily administration or shorter-term pre-treatment. The protective properties occurred independently of 3-hydroxy-3-methylglutaryl-CoA reductase inhibition because co-treatment with mevalonate or other isoprenoids did not reverse or attenuate neuroprotection. Atorvastatin attenuated the glutamate-induced increase of intracellular calcium, which was associated with a modulation of NMDA receptor function. Taken together, atorvastatin exerts specific anti-excitotoxic effects independent of 3-hydroxy-3-methylglutaryl-CoA reductase inhibition, which has potential therapeutic implications.
Knowledge of the developmental changes of cardiovascular parameters in the genetic background of a mouse strain is important for understanding phenotypic changes in transgenic or knockout mouse models for heart disease. We studied arterial blood pressure and myocardial contractility in mice of the common background strain C57BL/6, aged 21 days [postnatal day 21 (P21)] to 580 days. Heart rate increased during maturation from 396 beats/min at P21 to 551 beats/min at postnatal day 50 (P50), and mean arterial blood pressure increased in parallel from 86 to 110 mmHg and remained constant afterward. Echocardiographically determined left ventricular myocardial wall dimensions (R = 0.79, P < 0.0001) and left ventricular mass calculated using the area-length algorithm correlated strongly with histomorphometrical measurements (R = 0.93, P < 0.001). Sarcomere shortening records from isolated ventricular myocytes used as a measure for myocardial contractility revealed a negative shortening-frequency relation under a pacing frequency of 2 Hz and a positive relation above 2 Hz. Shortening amplitudes recorded from P21 myocytes were smaller, and the shortening-frequency relation was less steep than in adult myocytes. A stimulation pause was followed by a negative "staircase" at pacing frequency of < or =6 Hz and a positive staircase at > or =6 Hz. P21 myocytes developed positive staircases at 8 and 10 Hz, and adult myocytes also developed them at 6 Hz. Blood pressure increase during maturation until P50 may originate from increasing single cardiomyocyte contractility.
Estrogen treatment in symptomatic postmenopausal women appears to improve cognitive performance including memory, an effect which may involve enhanced nitric oxide formation in hippocampal neurons. To study whether 17beta-estradiol (E2) affects NO synthase activity in the hippocampus, we investigated the influence of E2 on hippocampal NO synthase expression and activity in female rats. Ovariectomy, which significantly decreased E2 serum levels, reduced neuronal (nNOS) and endothelial NO synthase (eNOS) expression and Ca(2+)-dependent NOS activity. E2 substitution reversed these effects. It is concluded that E2 increases nNOS and eNOS expression and activity in female hippocampus and thus improves hippocampal function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.