There is increased concern about poor scientific practices arising from an excessive focus on P-values. Two particularly worrisome practices are selective reporting of significant results and ‘P-hacking’. The latter is the manipulation of data collection, usage, or analyses to obtain statistically significant outcomes. Here, we introduce the novel, to our knowledge, concepts of selective reporting of nonsignificant results and ‘reverse P-hacking’ whereby researchers ensure that tests produce a nonsignificant result. We test whether these practices occur in experiments in which researchers randomly assign subjects to treatment and control groups to minimise differences in confounding variables that might affect the focal outcome. By chance alone, 5% of tests for a group difference in confounding variables should yield a significant result (P < 0.05). If researchers less often report significant findings and/or reverse P-hack to avoid significant outcomes that undermine the ethos that experimental and control groups only differ with respect to actively manipulated variables, we expect significant results from tests for group differences to be under-represented in the literature. We surveyed the behavioural ecology literature and found significantly more nonsignificant P-values reported for tests of group differences in potentially confounding variables than the expected 95% (P = 0.005; N = 250 studies). This novel, to our knowledge, publication bias could result from selective reporting of nonsignificant results and/or from reverse P-hacking. We encourage others to test for a bias toward publishing nonsignificant results in the equivalent context in their own research discipline.
The “dangerous niche” hypothesis posits that neophobia functions to reduce the cost of habitat use among animals exposed to unknown risks. For example, more dangerous foraging or higher competition may lead to increased spatial neophobia. Likewise, elevated ambient predation threats have been shown to induce phenotypically plastic neophobic predator avoidance. In both cases, neophobia is argued to reduce the cost of living associated with ecological uncertainty. Here, we test the hypothesis that ambient predation shapes both neophobic predator avoidance and spatial and foraging neophobia in Trinidadian guppies. Guppies were exposed to a novel foraging arena paired with a known cue (conspecific alarm cue), a novel cue (lemon odor), or a stream water control in three streams differing in ambient predation risk. We demonstrate that guppies from a high-predation-risk stream exhibited risk-averse foraging patterns regardless of the chemical stimulus presented (high spatial neophobia) and that those from a low-predation-risk stream were only risk-averse when the foraging arenas were paired with conspecific alarm cue (lower spatial neophobia). Those tested in the intermediate-predation-risk stream were consistently intermediate to the high-risk vs. low-risk populations. Our study suggests that ambient predation risk shapes both neophobic predator avoidance and space-use patterns and that neophobia may function as a “generalized” response to ecological uncertainty.
Aggressive behavior when competing for resources is expected to increase as the ratio of competitors-to-resource ratio (CRR) units increases. Females are expected to be more aggressive than males when competing for food when body size is more strongly related to reproductive success in females than in males, whereas aggression is predicted to decrease under high ambient predation risk by natural selection. Under the risk allocation model, however, individuals under high ambient predation risk are expected to be more aggressive, and forage more in the absence of imminent risk than their low risk counterparts. An interaction between adult sex ratio (i.e., adult males/females), ambient predation risk (high vs. low), and sex on intrasexual competition for mates in Trinidadian guppies Poecilia reticulata has been shown. The interaction suggested an increase in aggression rates as CRR increased, except for males from the high predation population. To compare the patterns of competition for food versus mates, we replicated this study by using food patches. We allowed 4 male or 4 female guppies from high and low predation populations to compete for 5, 3, or 1 food patches. The foraging rate was higher in a high rather than low ambient predation risk population. Surprisingly, CRR, sex, and population of origin had no effect on aggression rates. Despite other environmental differences between the 2 populations, the effect of ambient predation risk may be a likely explanation for differences in foraging rates. These results highlight the importance for individuals to secure food despite the cost of competition and predation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.