Previous work has identified 6 important areas to consider when evaluating validity and bias in studies of prognostic factors: participation, attrition, prognostic factor measurement, confounding measurement and account, outcome measurement, and analysis and reporting. This article describes the Quality In Prognosis Studies tool, which includes questions related to these areas that can inform judgments of risk of bias in prognostic research.A working group comprising epidemiologists, statisticians, and clinicians developed the tool as they considered prognosis studies of low back pain. Forty-three groups reviewing studies addressing prognosis in other topic areas used the tool and provided feedback. Most reviewers (74%) reported that reaching consensus on judgments was easy. Median completion time per study was 20 minutes; interrater agreement (κ statistic) reported by 9 review teams varied from 0.56 to 0.82 (median, 0.75). Some reviewers reported challenges making judgments across prompting items, which were addressed by providing comprehensive guidance and examples. The refined Quality In Prognosis Studies tool may be useful to assess the risk of bias in studies of prognostic factors.
Quality appraisal, a necessary step in systematic reviews, is incomplete in most reviews of prognosis studies. Adequate quality assessment should include judgments about 6 areas of potential study biases. Authors should incorporate these quality assessments into their synthesis of evidence about prognosis.
Loss to follow-up is problematic in most cohort studies and often leads to bias. Although guidelines suggest acceptable follow-up rates, the authors are unaware of studies that test the validity of these recommendations. The objective of this study was to determine whether the recommended follow-up thresholds of 60-80% are associated with biased effects in cohort studies. A simulation study was conducted using 1000 computer replications of a cohort of 500 observations. The logistic regression model included a binary exposure and three confounders. Varied correlation structures of the data represented various levels of confounding. Differing levels of loss to follow-up were generated through three mechanisms: missing completely at random (MCAR), missing at random (MAR) and missing not at random (MNAR). The authors found no important bias with levels of loss that varied from 5 to 60% when loss to follow-up was related to MCAR or MAR mechanisms. However, when observations were lost to follow-up based on a MNAR mechanism, the authors found seriously biased estimates of the odds ratios with low levels of loss to follow-up. Loss to follow-up in cohort studies rarely occurs randomly. Therefore, when planning a cohort study, one should assume that loss to follow-up is MNAR and attempt to achieve the maximum follow-up rate possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.