Ocean surface monitoring, emphasizing oil slick detection, has become essential due to its importance for oil exploration and ecosystem risk prevention. Automation is now mandatory since the manual annotation process of oil by photo-interpreters is time-consuming and cannot process the data collected continuously by the available spaceborne sensors. Studies on automatic detection methods mainly focus on Synthetic Aperture Radar (SAR) data exclusively to detect anthropogenic (spills) or natural (seeps) oil slicks, all using limited datasets. The main goal is to maximize the detection of oil slicks of both natures while being robust to other phenomena that generate false alarms, called “lookalikes”. To this end, this paper presents the automation of offshore oil slick detection on an extensive database of real and recent oil slick monitoring scenarios, including both types of slicks. It relies on slick annotations performed by expert photo-interpreters on Sentinel-1 SAR data over four years and three areas worldwide. In addition, contextual data such as wind estimates and infrastructure positions are included in the database as they are relevant data for oil detection. The contributions of this paper are: (i) A comparative study of deep learning approaches using SAR data. A semantic and instance segmentation analysis via FC-DenseNet and Mask R-CNN, respectively. (ii) A proposal for Fuse-FC-DenseNet, an extension of FC-DenseNet that fuses heterogeneous SAR and wind speed data for enhanced oil slick segmentation. (iii) An improved set of evaluation metrics dedicated to the task that considers contextual information. (iv) A visual explanation of deep learning predictions based on the SHapley Additive exPlanation (SHAP) method adapted to semantic segmentation. The proposed approach yields a detection performance of up to 94% of good detection with a false alarm reduction ranging from 14% to 34% compared to mono-modal models. These results provide new solutions to improve the detection of natural and anthropogenic oil slicks by providing tools that allow photo-interpreters to work more efficiently on a wide range of marine surfaces to be monitored worldwide. Such a tool will accelerate the oil slick detection task to keep up with the continuous sensor acquisition. This upstream work will allow us to study its possible integration into an industrial production pipeline. In addition, a prediction explanation is proposed, which can be integrated as a step to identify the appropriate methodology for presenting the predictions to the experts and understanding the obtained predictions and their sensitivity to contextual information. Thus it helps them to optimize their way of working.
The introduction of Deep Neural Networks in high-level applications is significantly increasing. However, the understanding of such model decisions by humans is not straightforward and may limit their use for critical applications. In order to address this issue, recent research work has introduced explanation methods, typically for classification and captioning. Nevertheless, for some tasks, explainability methods need to be developed. This includes image segmentation that is an essential component for many high-level applications. In this paper, we propose a general workflow allowing for the adaptation of a state of the art explainability methods, especially SHAP, to image segmentation tasks. The approach allows for explanation of single pixels as well image areas. We show the relevance of the approach on a critical application such as oil slick pollution detection on the sea surface. We also show the applicability of the method on a more standard multimedia domain semantic segmentation task. The conducted experiments highlight the relevant features on which the models derive their local results and help identify general model behaviours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.