Solid tumors often develop an acidic microenvironment, which plays a critical role in tumor progression and is associated with increased level of invasion and metastasis. The 37-residue pH (low) insertion peptide (pHLIP®) is under study as an imaging platform because of its unique ability to insert into cell membranes at a low extracellular pH (pHe<7). Labeling of peptides with [18F]-fluorine is usually performed via prosthetic groups using chemoselective coupling reactions. One of the most successful procedures involves the alkyne-azide copper(I) catalyzed cycloaddition (CuAAC). However, none of the known “click” methods have been applied to peptides as large as pHLIP. We designed a novel prosthetic group and extended the use of the CuAAC “click chemistry” for the simple and efficient 18F-labeling of large peptides. For the evaluation of this labeling approach, a D-amino acid analogue of WT-pHLIP and a L-amino acid control peptide K-pHLIP, both functionalized at the N-terminus with 6-azidohexanoic acid, were used. The novel 6-[18F]fluoro-2-ethynylpyridine prosthetic group, was obtained via nucleophilic substitution on the corresponding bromo-precursor after 10 min at 130 °C with a radiochemical yield of 27.5 ± 6.6% (decay corrected) with high radiochemical purity ≥ 98%. The subsequent CuI catalyzed “click” reaction with the azido functionalized pHLIP peptides was quantitative within 5 min at 70 °C in a mixture of water and ethanol using Cu-acetate and sodium L-ascorbate. [18F]-D-WT-pHLIP and [18F]-L-K-pHLIP were obtained with total radiochemical yields of 5–20% after HPLC purification. The total reaction time was only 85 min including formulation. In vitro stability tests revealed high stability of the [18F]-D-WT-pHLIP in human and mouse plasma after 120 min, with the parent tracer remaining intact at 65 and 85%, respectively. PET imaging and biodistribution studies in LNCaP and PC-3 xenografted mice with the [18F]-D-WT-pHLIP and the negative control [18F]-L-K-pHLIP revealed pH-dependent tumor retention. This reliable and efficient protocol promises to be useful for the 18F-labeling of large peptides such as pHLIP and will accelerate the evaluation of numerous [18F]-pHLIP analogues as potential PET tracers.
Although 18F-fluorodeoxyglucose (18F-FDG) is still the most widely used positron emission tomography (PET) radiotracer, there are a few well-known limitations to its use. The last decade has seen the development of new PET probes for in vivo visualization of specific molecular targets, along with important technical advances in the production of positron-emitting radionuclides and their related labeling methods. As such, a broad range of new PET tracers are in preclinical development or have recently entered clinical trials. The topics covered in this review include labeling methods, biological targets, and the most recent preclinical or clinical data of some of the next generation of PET radiopharmaceuticals. This review, which is by no means exhaustive, has been separated into sections related to the PET radionuclide used for radiolabeling: fluorine-18, for the labeling of agents such as FACBC, FDHT, choline, and Galacto-RGD; carbon-11, for the labeling of choline; gallium-68, for the labeling of peptides such as DOTATOC and bombesin analogs; and the long-lived radionuclides iodine-124 and zirconium-89 for the labeling of monoclonal antibodies cG250, and J591 and trastuzumab, respectively.
Triple-Negative Basal-Like tumors, representing 15 to 20% of breast cancers, are very aggressive and with poor prognosis. Targeted therapies have been developed extensively in preclinical and clinical studies to open the way for new treatment strategies. The present study has focused on developing 3D cell cultures from SUM1315 and MDA-MB-231, two triple-negative basal-like (TNBL) breast cancer cell lines, using the liquid overlay technique. Extracellular matrix concentration, cell density, proliferation, cell viability, topology and ultrastructure parameters were determined. The results showed that for both cell lines, the best conditioning regimen for compact and homogeneous spheroid formation was to use 1000 cells per well and 2% Geltrex®. This conditioning regimen highlighted two 3D cell models: non-proliferative SUM1315 spheroids and proliferative MDA-MB-231 spheroids. In both cell lines, the comparison of 2D vs 3D cell culture viability in the presence of increasing concentrations of chemotherapeutic agents i.e. cisplatin, docetaxel and epirubicin, showed that spheroids were clearly less sensitive than monolayer cell cultures. Moreover, a proliferative or non-proliferative 3D cell line property would enable determination of cytotoxic and/or cytostatic drug activity. 3D cell culture could be an excellent tool in addition to the arsenal of techniques currently used in preclinical studies.
The triple negative basal-like (TNBL) breast carcinoma is an aggressive and unfavorable prognosis disease. Inhibitors of poly(ADP-ribose) polymerase such as Olaparib could represent a promising targeted therapy but their sensitivity against Multidrug Resistance proteins (MDR), which causes resistance, is not well defined. Thus, our work focused on the analysis of P-gp and BCRP coexpression in the SUM1315 TNBL human cell line, in correlation with Olaparib intracellular concentration. Western blot analyses showed a clear coexpression of P-gp and BCRP in SUM1315 cells. A low cytotoxic Olaparib treatment clearly led to an increased expression of both BCRP and P-gp in these cells. Indeed, after 1.5 h of treatment, BCRP expression was increased with a 1.8 fold increase rate. Then, P-gp took over from 3 h to 15 h with an average increase rate of 1.8 fold, and finally returned to control value at 24 h. HPLC-UV analyses showed that, in the same treatment conditions, the intracellular Olaparib concentration increased from 1 h to 3 h and remained relatively stable until 24 h. Results suggest that the resistance mechanism induced by Olaparib in TNBL SUM1315 cell line may be overpassed if a cytotoxic and stable intracellular level of the drug can be maintained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.