The recent availability of next-generation sequencing (NGS) has made possible the use of dense genetic markers to identify regions of the genome that may be under the influence of selection. Several statistical methods have been developed recently for this purpose. Here, we present the results of an individual-based simulation study investigating the power and error rate of popular or recent genome scan methods: linear regression, Bayescan, BayEnv and LFMM. Contrary to previous studies, we focus on complex, hierarchical population structure and on polygenic selection. Additionally, we use a false discovery rate (FDR)-based framework, which provides an unified testing framework across frequentist and Bayesian methods. Finally, we investigate the influence of population allele frequencies versus individual genotype data specification for LFMM and the linear regression. The relative ranking between the methods is impacted by the consideration of polygenic selection, compared to a monogenic scenario. For strongly hierarchical scenarios with confounding effects between demography and environmental variables, the power of the methods can be very low. Except for one scenario, Bayescan exhibited moderate power and error rate. BayEnv performance was good under nonhierarchical scenarios, while LFMM provided the best compromise between power and error rate across scenarios. We found that it is possible to greatly reduce error rates by considering the results of all three methods when identifying outlier loci.
The study of local adaptation is rendered difficult by many evolutionary confounding phenomena (for example, genetic drift and demographic history). When complex traits are involved in local adaptation, phenomena such as phenotypic plasticity further hamper evolutionary biologists to study the complex relationships between phenotype, genotype and environment. In this perspective paper, we suggest that the common garden experiment, specifically designed to deal with phenotypic plasticity, has a clear role to play in the study of local adaptation, even (if not specifically) in the genomic era. After a quick review of some high-throughput genotyping protocols relevant in the context of a common garden, we explore how to improve common garden analyses with dense marker panel data and recent statistical methods. We then show how combining approaches from population genomics and genome-wide association studies with the settings of a common garden can yield to a very efficient, thorough and integrative study of local adaptation. Especially, evidence from genomic (for example, genome scan) and phenotypic origins constitute independent insights into the possibility of local adaptation scenarios, and genome-wide association studies in the context of a common garden experiment allow to decipher the genetic bases of adaptive traits.
The evolutionary basis of domestication has been a longstanding question and its genetic architecture is becoming more tractable as more domestic species become genome-enabled. Before becoming established worldwide, sheep and goats were domesticated in the fertile crescent 10,500 years before present (YBP) where their wild relatives remain. Here we sequence the genomes of wild Asiatic mouflon and Bezoar ibex in the sheep and goat domestication center and compare their genomes with that of domestics from local, traditional, and improved breeds. Among the genomic regions carrying selective sweeps differentiating domestic breeds from wild populations, which are associated among others to genes involved in nervous system, immunity and productivity traits, 20 are common to Capra and Ovis. The patterns of selection vary between species, suggesting that while common targets of selection related to domestication and improvement exist, different solutions have arisen to achieve similar phenotypic end-points within these closely related livestock species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.