Lameness in dairy herds is traditionally detected by visual inspection, which is time-consuming and subjective. Compared with healthy cows, lame cows often spend longer time lying down, walk less and change behaviour around feeding time.Accelerometers measuring cow leg activity may assist farmers in detecting lame cows. On four commercial farms, accelerometer data were derived from hind leg-mounted accelerometers on 348 Holstein cows, 53 of them during two lactations. The cows were milked twice daily and had no access to pasture. During a lactation, locomotion score (LS) was assessed on average 2.4 times (s.d. 1.3). Based on daily lying duration, standing duration, walking duration, total number of steps, step frequency, motion index (MI, i.e. total acceleration) for lying, standing and walking, eight accelerometer means and their corresponding coefficient of variation (CV) were calculated for each week immediately before an LS. A principal component analysis was performed to evaluate the relationship between the variables. The effects of LS and farm on the principal components (PC) and on the variables were analysed in a mixed model. The first four PC accounted for 27%, 18%, 12% and 10% of the total variation, respectively. PC1 corresponded to Activity variability due to heavy loading by five CV variables related to standing and walking. PC2 corresponded to Activity level due to heavy loading by MI walking, MI standing and walking duration. PC3 corresponded to Recumbency due to heavy loading by four variables related to lying. PC4 corresponded mainly to Stepping due to heavy loading by step frequency. Activity variability at LS4 was significantly higher than at the lower LS levels. Activity level was significantly higher at LS1 than at LS2, which was significantly higher than at LS4. Recumbency was unaffected by LS. Stepping at LS1 and LS2 was significantly higher than at LS3 and LS4. Activity level was significantly lower on farm 3 compared with farms 1 and 2. Stepping was significantly lower on farms 1 and 3 compared with farms 2 and 4. MI standing indicated increased restlessness while standing when cows increased from LS3 to LS4. Lying duration was only increased in lame cows. In conclusion, Activity level differed already between LS1 and LS2, thus detecting early signs of lameness, particularly through contributions from walking duration and MI walking. Lameness detection models including walking duration, MI walking and MI standing seem worthy of further investigation.
Using automatic sensor data, this is the first study to characterize individual cow feeding and rumination behavior simultaneously as affected by lameness. A group of mixed-parity, lactating Holstein cows were loose-housed with free access to 24 cubicles and 12 automatic feed stations. Cows were milked three times/day. Fresh feed was delivered once daily. During 24 days with effectively 22 days of data, 13,908 feed station visits and 7,697 rumination events obtained from neck-mounted accelerometers on 16 cows were analyzed. During the same period, cows were locomotion scored on four occasions and categorized as lame (n = 9) or not lame (n = 7) throughout the study. Rumination time, number of rumination events, feeding time, feeding frequency, feeding rate, feed intake, and milk yield were calculated per day, and coefficients of variation were used to estimate variation between and within cows. Based on daily sums, using each characteristic as response, the effects of lameness and stage of lactation were tested in a mixed model. With rumination time as response, each of the four feeding characteristics, milk yield, and lameness were tested in a second mixed model. On a visit basis, effects of feeding duration, lameness, and milk yield on feed intake were tested in a third mixed model. Overall, intra-individual variation was <15% and inter-individual variation was up to 50%. Lameness introduced more inter-individual variation in feeding characteristics (26–50%) compared to non-lame cows (17–29%). Lameness decreased daily feeding time and daily feeding frequency, but increased daily feeding rate. Interestingly, lameness did not affect daily rumination behaviors, fresh matter intake, or milk yield. On a visit basis, a high feeding rate was associated with a higher feed intake, a relationship that was exacerbated in the lame cows. In conclusion, cows can be characterized in particular by their feeding behavior, and lame cows differ from their non-lame pen-mates in terms of fewer feed station visits, faster eating, less time spent feeding, and more variable feeding behavior. Further, daily rumination time was slightly negatively associated with feeding rate, a relationship which calls for more research to quantify rumination efficiency relative to feeding rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.