The boreal forest will be strongly affected by climate change and in turn, these vast ecosystems may significantly impact global climatology and hydrology due to their exchanges of carbon and water with the atmosphere. It is now crucial to understand the intricate relationships between precipitation and evapotranspiration in these environments, particularly in less-studied locations characterized by a cold and humid climate. This study presents state-of-the-art measurements of energy and water budgets components over three years (2016)(2017)(2018) at the Montmorency Forest, Québec, Canada: a balsam fir boreal forest that receives ~1600 mm of precipitation annually (continental subarctic climate; Köppen classification subtype Dfc). Precipitation, evapotranspiration and potential evapotranspiration at the site are compared with observations from thirteen experimental sites around the world. These intercomparison sites (89 study-years) encompass various types of climate and vegetation (black spruces, jack pines, etc.) encountered in boreal forests worldwide. The Montmorency Forest stands out by receiving the largest amount of precipitation. Across all sites, water availability seems to be the principal evapotranspiration constraint, as precipitation tends to be more influential than potential evapotranspiration and other factors. This leads to the Montmorency Forest generating the largest amount of evapotranspiration, on average ~550 mm y −1 . This value appears to be an ecosystem maximum for evapotranspiration, which may be explained either by a physiological limit or a limited energy availability due to the presence of cloud cover. The Montmorency Forest water budget evacuates the precipitation excess mostly by watershed discharges, at an average rate of ~1050 mm y −1 , with peaks during the spring freshet. This behaviour, typical of mountainous headwater basins, necessarily influence downstream hydrological regimes to a large extent. This study provides a much needed insight in the hydrological regimes of a humid boreal-forested mountainous watershed, a type of basin rarely studied with precise energy and water budgets before.
Humid boreal forests are unique environments characterized by a cold climate, abundant precipitation, and high evapotranspiration. Transpiration ( E T ), as a component of evapotranspiration (E), behaves differently under wet and dry canopy conditions, yet very few studies have focused on the dynamics of transpiration to evapotranspiration ratio ( E T / E ) under transient canopy wetness states. This study presents field measurements of E T / E at the Montmorency Forest, Québec, Canada: a balsam fir boreal forest that receives ∼ 1600 mm of precipitation annually (continental subarctic climate; Köppen classification subtype Dfc). Half-hourly observations of E and E T were obtained over two growing seasons using eddy-covariance and sap flow (Granier’s constant thermal dissipation) methods, respectively, under wet and dry canopy conditions. A series of calibration experiments were performed for sap flow, resulting in species-specific calibration coefficients that increased estimates of sap flux density by 34 % ± 8 % , compared to Granier’s original coefficients. The uncertainties associated with the scaling of sap flow measurements to stand E T , especially circumferential and spatial variations, were also quantified. From 30 wetting–drying events recorded during the measurement period in summer 2018, variations in E T / E were analyzed under different stages of canopy wetness. A combination of low evaporative demand and the presence of water on the canopy from the rainfall led to small E T / E . During two growing seasons, the average E T / E ranged from 35 % ± 2 % to 47 % ± 3 % . The change in total precipitation was not the main driver of seasonal E T / E variation, therefore it is important to analyze the impact of rainfall at half-hourly intervals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.