We report experimental measurements of narrowband, single-mode excitation, and drive beam energy modulation, in a dielectric wakefield accelerating structure with planar geometry and Braggreflector boundaries. A short, relativistic electron beam (∼1ps) with moderate charge (∼100pC) is used to drive the wakefields in the structure. The fundamental mode of the structure is reinforced by constructive interference in the alternating dielectric layers at the boundary, and is characterized by the spectral analysis of the emitted coherent Cherenkov radiation signal. Data analysis shows a narrowband peak at 210GHz corresponding to the fundamental mode of the structure. Simulations in both 2D and 3D provide insight into the propagating fields and reproduction of the electron beams dynamics observables and emitted radiation characteristics.
International audienceA new method of laser frequency stabilization using polarization property of an optical cavity is proposed. In a standard Fabry–Perot cavity, the coating layers thickness of cavity mirrors is calculated to obtain the same phase shift for sand p-wave but a slight detuning from the nominal thickness can produce sand p-wave phase detuning. As a result, each wave accumulates a different round-trip phase shift and resonates at a different frequency. Using this polarization property, an error signal is generated by a simple setup consisting of a quarter wave-plate rotated at 45°, a polarizing beam splitter and two photodiodes. This method exhibits similar error signal as the Pound–Drever–Hall technique but without need for any frequency modulation. Lock theory and experimental results are presented in this paper.
Nonparaxial perturbative equations are derived from the scalar wave equation by taking into account spatiotemporal couplings. General solutions are obtained in Fourier space and further transformed back in direct space. They depend on parameters that can be used to match various boundary conditions and the perturbative expansion of any nonparaxial exact solutions. This parametrization is used to study the sensitivity of direct electron acceleration off an ultrashort tightly focused laser pulse to nonparaxial corrections of radially polarized electromagnetic fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.