SignificanceDecades of research have fostered the now-prevalent assumption that noncrop habitat facilitates better pest suppression by providing shelter and food resources to the predators and parasitoids of crop pests. Based on our analysis of the largest pest-control database of its kind, noncrop habitat surrounding farm fields does affect multiple dimensions of pest control, but the actual responses of pests and enemies are highly variable across geographies and cropping systems. Because noncrop habitat often does not enhance biological control, more information about local farming contexts is needed before habitat conservation can be recommended as a viable pest-suppression strategy. Consequently, when pest control does not benefit from noncrop vegetation, farms will need to be carefully comanaged for competing conservation and production objectives.
Human land use threatens global biodiversity and compromises multiple ecosystem functions critical to food production. Whether crop yield–related ecosystem services can be maintained by a few dominant species or rely on high richness remains unclear. Using a global database from 89 studies (with 1475 locations), we partition the relative importance of species richness, abundance, and dominance for pollination; biological pest control; and final yields in the context of ongoing land-use change. Pollinator and enemy richness directly supported ecosystem services in addition to and independent of abundance and dominance. Up to 50% of the negative effects of landscape simplification on ecosystem services was due to richness losses of service-providing organisms, with negative consequences for crop yields. Maintaining the biodiversity of ecosystem service providers is therefore vital to sustain the flow of key agroecosystem benefits to society.
A total of 738 colonies from 64 localities along the African continent have been analysed using the DraI RFLP of the COI-COII mitochondrial region. Mitochondrial DNA of African honeybees appears to be composed of three highly divergent lineages. The African lineage previously reported (named A) is present in almost all the localities except those from north-eastern Africa. In this area, two newly described lineages (called O and Y), putatively originating from the Near East, are observed in high proportion. This suggests an important differentiation of Ethiopian and Egyptian honeybees from those of other African areas. The A lineage is also present in high proportion in populations from the Iberian Peninsula and Sicily. Furthermore, eight populations from Morocco, Guinea, Malawi and South Africa have been assayed with six microsatellite loci and compared to a set of eight additional populations from Europe and the Middle East. The African populations display higher genetic variability than European populations at all microsatellite loci studied thus far. This suggests that African populations have larger effective sizes than European ones. According to their microsatellite allele frequencies, the eight African populations cluster together, but are divided in two subgroups. These are the populations from Morocco and those from the other African countries. The populations from southern Europe show very low levels of 'Africanization' at nuclear microsatellite loci. Because nuclear and mitochondrial DNA often display discordant patterns of differentiation in the honeybee, the use of both kinds of markers is preferable when assessing the phylogeography of Apis mellifera and to determine the taxonomic status of the subspecies.
Apis mellifera is composed of three evolutionary branches including mainly African (branch A), western and northern European (branch M), and southeastern European (branch C) populations. The existence of morphological clines extending from the equator to the Polar Circle through Morocco and Spain raised the hypothesis that the branch M originated in Africa. Mitochondrial DNA analysis revealed that branches A and M were characterized by highly diverged lineages implying very remote links between both branches. It also revealed that mtDNA haplotypes from lineages A coexisted with haplotypes M in the Iberian Peninsula and formed a south-north frequency cline, suggesting that this area could be a secondary contact zone between the two branches. By analyzing 11 populations sampled along a France-Spain/Portugal-Morocco-Guinea transect at 8 microsatellite loci and the DraI RFLP of the COI-COII mtDNA marker, we show that Iberian populations do not present any trace of "africanization" and are very similar to French populations when considering microsatellite markers. Therefore, the Iberian Peninsula is not a transition area. The higher haplotype A variability observed in Spanish and Portuguese samples compared to that found in Africa is explained by a higher mutation rate and multiple and recent introductions. Selection appears to be the best explanation to the morphological and allozymic clines and to the diffusion and maintenance of African haplotypes in Spain and Portugal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.