ZnO nanowires grown by chemical bath deposition (CBD) are of high interest, but their doping with extrinsic elements including gallium in aqueous solution is still challenging despite its primary importance for transparent electrodes and electronics, as well as mid-infrared plasmonics. We elucidate the formation mechanisms of ZnO nanowires by CBD using zinc nitrate and hexamethylenetetramine as standard chemical precursors, as well as gallium nitrate and ammonia as chemical additives. A complete growth diagram, revealing the effects of both the relative concentration of gallium nitrate and pH, is gained by combining a thorough experimental approach with thermodynamic computations yielding theoretical solubility plots as well as Zn(II) and Ga(III) species. The role of Ga(OH)4complexes is specifically shown as capping agents on the m-plane sidewalls of ZnO nanowires, enhancing their development and hence decreasing their aspect ratio. Additionally, the gallium incorporation into ZnO nanowires is investigated in details by chemical analyses and Raman scattering. They show the predominant formation of gallium substituting for zinc atoms (GaZn) in as-grown ZnO nanowires and their partial conversion into GaZn-VZn complexes after post-deposition annealing under oxygen atmosphere. The conversion is further related to a significant relaxation of the strain level in 2 ZnO nanowires. These findings reporting the physico-chemical processes at work during the formation of ZnO nanowires and the related gallium incorporation mechanisms offer a general strategy for their extrinsic doping and open the way for carefully controlling their physical properties as required for nanoscale engineering devices.
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The use of rare-earth elements (Y, Ce, Eu...) in commercial phosphor-converted white light-emitting diodes (pc-WLEDs) raises environmental and geopolitical concerns. Lanthanide-free white emitting phosphors based on amorphous yttrium aluminium borate...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.