A significant proportion of the population suffers from tinnitus, a bothersome auditory phantom perception that can severely alter the quality of life. Numerous experimental studies suggests that a maladaptive plasticity of the auditory and limbic cortical areas may underlie tinnitus. Accordingly, repetitive transcranial magnetic stimulation (rTMS) has been repeatedly used with success to reduce tinnitus intensity. The potential of transcranial direct current stimulation (tDCS), another promising method of noninvasive brain stimulation, to relieve tinnitus has not been explored systematically. In a double-blind, placebo-controlled and balanced order design, 20 patients suffering from chronic untreatable tinnitus were submitted to 20 minutes of 1 mA anodal, cathodal and sham tDCS targeting the left temporoparietal area. The primary outcome measure was a change in tinnitus intensity or discomfort assessed with a Visual Analogic Scale (VAS) change-scale immediately after tDCS and 1 hour later. Compared to sham tDCS, anodal tDCS significantly reduced tinnitus intensity immediately after stimulation; whereas cathodal tDCS failed to do so. The variances of the tinnitus intensity and discomfort VAS change-scales increased dramatically after anodal and cathodal tDCS, whereas they remained virtually unchanged after sham tDCS. Moreover, several patients unexpectedly reported longer-lasting effects (at least several days) such as tinnitus improvement, worsening, or changes in tinnitus features, more frequently after real than sham tDCS. Anodal tDCS is a promising therapeutic tool for modulating tinnitus perception. Moreover, both anodal and cathodal tDCS seem able to alter tinnitus perception and could, thus, be used to trigger plastic changes.
The objective of this study is to evaluate the safety and efficacy of a new transcutaneous bone-conduction implant (BCI BB) in patients with conductive and mixed hearing loss or with single-sided deafness (SSD), 1 year after surgical implantation. The study design is multicentric prospective, intra-subject measurements. Each subject is his/her own control. The setting is nine university hospitals: 7 French and 2 Belgian. Sixteen subjects with conductive or mixed hearing loss with bone-conduction hearing thresholds under the upper limit of 45 dB HL for each frequency from 500 to 4000 Hz, and 12 subjects with SSD (contralateral hearing within normal range) were enrolled in the study. All subjects were older than 18 years. The intervention is rehabilitative. The main outcome measure is the evaluation of skin safety, audiological measurements, benefit, and satisfaction questionnaires with a 1-year follow up. Skin safety was rated as good or very good. For the mixed or conductive hearing loss groups, the average functional gain (at 500 Hz, 1, 2, 4 kHz) was 26.1 dB HL (SD 13.7), and mean percentage of speech recognition in quiet at 65 dB was 95 % (vs 74 % unaided). In 5/6 SSD subjects, values of SRT in noise were lower with BB. Questionnaires revealed patient benefit and satisfaction. The transcutaneous BCI is very well tolerated at 1-year follow up, improves audiometric thresholds and intelligibility for speech in quiet and noise, and gives satisfaction to both patients with mixed and conductive hearing loss and patients with SSD.
Safety and efficacy of the Bonebridge bone conduction implant: a comparative study 2 Postoperative tympanic membrane retraction and recurrence rate in primary acquired cholesteatoma 19 Ocular surface microbiota changes after external dacryocystorhinostomy: a "chicken or egg" problem
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.