This book describes advances in the application of chaos theory to classical scattering and nonequilibrium statistical mechanics generally, and to transport by deterministic diffusion in particular. The author presents the basic tools of dynamical systems theory, such as dynamical instability, topological analysis, periodic-orbit methods, Liouvillian dynamics, dynamical randomness and large-deviation formalism. These tools are applied to chaotic scattering and to transport in systems near equilibrium and maintained out of equilibrium. Chaotic Scattering is illustrated with disk scatterers and with examples of unimolecular chemical reactions and then generalized to transport in spatially extended systems. This book will be bought by researchers interested in chaos, dynamical systems, chaotic scattering, and statistical mechanics in theoretical, computational and mathematical physics and also in theoretical chemistry.
A fluctuation theorem is proved for the macroscopic currents of a system in a nonequilibrium steady state, by using Schnakenberg network theory. The theorem can be applied, in particular, in reaction systems where the affinities or thermodynamic forces are defined globally in terms of the cycles of the graph associated with the stochastic process describing the time evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.