The development of retinal projections to the dorsal lateral geniculate nucleus (dLGN) and superior colliculus (SC) has been studied in fetal and neonatal mice of the pigmented C57BL/6 strain, using the anterograde transport of tritiated proline and horseradish peroxidase (HRP). Retinal efferents are present contralaterally just beyond the chiasm at E14. By E16 they have grown into both dLGN and SC. Ipsilateral fibers are limited to the proximal optic tract at E16; their growth into dLGN and SC is delayed until E18-birth. During the first 2 postnatal days, an early population of ipsilateral fibers invades the dLGN. Most of these fibers grow in or around the medio-dorsal sector of the dLGN, i.e., the future binocular segment. Fibers are also present, but at lower densities, in the ventral half of the nucleus and thereafter become dispersed or are lost, without at any stage becoming dense. Some denser labeling is also present ipsilaterally in the outer rim of dLGN, just below the optic tract, and later disappears. On the third postnatal day, the ipsilateral fibers establish a deep and denser projection along the medial and dorsal borders of dLGN; this projection overlaps part of the crossed projection, which at this age extends to the whole nucleus. The segregation of each projection starts on the fourth postnatal day, when crossed fibers begin to disappear from the small region of uncrossed projection. This process goes on for another 4 days. During this period, the ipsilateral fibers withdraw from the deepest layer of dLGN, and their terminal density increases gradually; by the eighth postnatal day, both projections are already well separated. Dense crossed projections first appear near the surface of the SC at birth. Prior to this, retinal fibers course throughout neurons of the collicular plate and underneath the pia. The uncrossed fibers invade the SC between birth and P3. They are located preferentially in the anterior and medial aspect of the SC. Subsequently, there occurs a diminution in the laminar and tangential extent of these projections, simultaneously with an intensification of the ipsilateral input to several small, longitudinally oriented clusters located deep to the crossed projections.
In the nervous system of many species, growing axons associate transiently with cellular groupings along their path. Whether this mechanism applies to the development of corticothalamic and thalamocortical projections is unknown. Using carbocyanine dyes, we studied the early growth of both corticofugal and thalamocortical fibers in hamster embryos. At embryonic day 11.5 (E11.5), corticofugal fibers invade the lateral ganglionic eminence (LGE), and thalamocortical fibers invade the medial ganglionic eminence (MGE). At this age, both sets of fibers are not yet in contact with each other. At the same time, neurons in each subdivision of the GE grow toward the cortex and thalamus. During the next 24 hr, corticofugal and thalamocortical fibers remain within the confines of the GE, where they course at different radial levels and bear large and complex growth cones. In the LGE, corticofugal fibers are often found in close association with cells that are likely to be neuronal. Starting on E13.5, both early projections from the GE decrease, and corticothalamic and thalamocortical fibers invade their definitive target regions. To test whether the GE specifically orients the growth and trajectories of cortical fibers even in the absence of the reciprocal thalamic projection, we cocultured explants of cortex and GE from either hamster or mouse embryos. These experiments showed that the GE, but not other tested brain regions, is able specifically to orient the growth of cortical axons. We therefore suggest that the GE may be an intermediate target in the pathfinding of axons between the cortex and the thalamus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.