Over the last two decades, there have been three deadly human outbreaks of coronaviruses (CoVs) caused by SARS-CoV, MERS-CoV, and SARS-CoV-2, which has caused the current COVID-19 global pandemic. All three deadly CoVs originated from bats and transmitted to humans via various intermediate animal reservoirs. It remains highly possible that other global COVID pandemics will emerge in the coming years caused by yet another spillover of a bat-derived SARS-like coronavirus (SL-CoV) into humans. Determining the Ag and the human B cells, CD4 1 and CD8 1 T cell epitope landscapes that are conserved among human and animal coronaviruses should inform in the development of future pan-coronavirus vaccines. In the current study, using several immunoinformatics and sequence alignment approaches, we identified several human B cell and CD4 1 and CD8 1 T cell epitopes that are highly conserved in 1) greater than 81,000 SARS-CoV-2 genome sequences identified in 190 countries on six continents; 2) six circulating CoVs that caused previous human outbreaks of the common cold; 3) nine SL-CoVs isolated from bats; 4) nine SL-CoV isolated from pangolins; 5) three SL-CoVs isolated from civet cats; and 6) four MERS strains isolated from camels. Furthermore, the identified epitopes: 1) recalled B cells and CD4 1 and CD8 1 T cells from both COVID-19 patients and healthy individuals who were never exposed to SARS-CoV-2, and 2) induced strong B cell and T cell responses in humanized HLA-DR1/HLA-A*02:01 double-transgenic mice. The findings pave the way to develop a preemptive multiepitope pancoronavirus vaccine to protect against past, current, and future outbreaks.
Follicular helper T (Tfh) cells within secondary lymphoid organs control multiple steps of B cell maturation and antibody (Ab) production. HIV-1 infection is associated with an altered B cell differentiation and Tfh isolated from lymph nodes of HIV-infected (HIV+) individuals provide inadequate B cell help in vitro. However, the mechanisms underlying this impairment of Tfh function are not fully defined. Using a unique collection of splenocytes, we compared the frequency, phenotype and transcriptome of Tfh subsets in spleens from HIV negative (HIV-) and HIV+ subjects. We observed an increase of CXCR5+PD-1highCD57-Tfh and germinal center (GC) CD57+ Tfh in HIV+ spleens. Both subsets showed a reduced mRNA expression of the transcription factor STAT-3, co-stimulatory, regulatory and signal transduction molecules as compared to HIV- spleens. Similarly, Foxp3 expressing follicular regulatory T (Tfr) cells were increased, suggesting sustained GC reactions in chronically HIV+ spleens. As a consequence, GC B cell populations were expanded, however, complete maturation into memory B cells was reduced in HIV+ spleens where we evidenced a compromised production of B cell-activating cytokines such as IL-4 and IL-10. Collectively our data indicate that, although Tfh proliferation and GC reactions seem to be ongoing in HIV-infected spleens, Tfh “differentiation” and expression of costimulatory molecules is skewed with a profound effect on B cell maturation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.