Dendritic cells take up antigens in peripheral tissues, process them into proteolytic peptides, and load these peptides onto major histocompatibility complex (MHC) class I and II molecules. Dendritic cells then migrate to secondary lymphoid organs and become competent to present antigens to T lymphocytes, thus initiating antigen-specific immune responses, or immunological tolerance. Antigen presentation in dendritic cells is finely regulated: antigen uptake, intracellular transport and degradation, and the traffic of MHC molecules are different in dendritic cells as compared to other antigen-presenting cells. These specializations account for dendritic cells' unique role in the initiation of immune responses and the induction of tolerance.
Dendritic cells (DCs) in lymphoid tissue arise from precursors that also produce monocytes and plasmacytoid DCs (pDCs). Where DC and monocyte lineage commitment occurs and the nature of the DC precursor that migrates from the bone marrow to peripheral lymphoid organs is unknown. We show that DC development progresses from the macrophage and DC precursor (MDP), to common DC precursors (CDPs) that give rise to pDCs and classical spleen DCs (cDCs), but not monocytes, and finally to committed precursors of cDCs (pre-cDCs). Pre-cDCs enter lymph nodes through and migrate along HEVs and later disperse and integrate into the DC network. Further cDC development involves cell division, controlled in part by regulatory T cells (Treg) and fms-related tyrosine kinase-3 (Flt3).Dendritic cells (DCs) are immune cells specialized to capture, process and present antigens to T lymphocytes to induce immunity or tolerance (1). Where commitment to DC development takes place, at what stage the monocyte lineage diverges from DCs, and the precise nature of the migrating DC precursor that moves from the bone marrow to the peripheral lymphoid organs is not known. These questions have been difficult to resolve in part because DC subsets are functionally and phenotypically diverse (2). For example, classical spleen DCs (cDCs) include two major functionally distinct subsets distinguished by the expression of a variety of C-type lectins and CD8 (2-4). Spleen and other tissues also contain plasmacytoid DCs (pDCs) that primarily initiate immune responses to nucleic acids (5,6).Lymphoid tissue cDCs, pDCs, and monocytes share a common progenitor called the macrophage and DC precursor (MDP) identified by its surface phenotype (Lin − cKit hi CD115 + CX 3 CR1 + Flt3 + ) (7,8), whereas a distinct progenitor called the common DC precursor (CDP) (Lin − cKit lo CD115 + Flt3 + ) is restricted to producing cDCs and pDCs (9,10). Although monocytes can develop many of the phenotypic features of DCs under inflammatory conditions (11-13), the cDC, pDC and monocyte lineages separate by the time they reach tissues and neither monocytes nor pDCs develop into cDCs under steady state conditions (8,14). Unlike monocytes and pDCs, cDCs in lymphoid tissues are thought to emerge from the bone marrow as immature cells that must further differentiate and divide in lymphoid organs (15,16 We searched for MDPs and CDPs in the blood and spleen by flow cytometry but could only detect them in the bone marrow ( Fig. 1A and Fig. S1). Although pre-cDCs can be identified in the spleen by combining density centrifugation and flow cytometry (18), we speculated that these cells could be identified directly by expression of Flt3 and the chemokine receptor, CX 3 CR1, which are expressed on other DC progenitors and also on mature cDCs (7,10,19). Indeed, we found a small but distinct population of lineage negative CD11c + MHC class II − SIRP-α int Flt3 + cells (pre-cDCs) in the bone marrow (0.2%), blood (0.03%), spleen (0.05%) and lymph nodes (LN) (0.03%) (Fig. 1B).To determine ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.