[1] Two end-member kinematic models of crustal shortening across the Himalaya are currently debated: one assumes localized thrusting along a single major thrust fault, the Main Himalayan Thrust (MHT) with nonuniform underplating due to duplexing, and the other advocates for out-of-sequence (OOS) thrusting in addition to thrusting along the MHT and underplating. We assess these two models based on the modeling of thermochronological, thermometric, and thermobarometric data from the central Nepal Himalaya. We complement a data set compiled from the literature with 114 40 Ar/ 39 Ar, 10 apatite fission track, and 5 zircon (U-Th)/He thermochronological data. The data are predicted using a thermokinematic model (PECUBE), and the model parameters are constrained using an inverse approach based on the Neighborhood Algorithm. The model parameters include geometric characteristics as well as overthrusting rates, radiogenic heat production in the High Himalayan Crystalline (HHC) sequence, the age of initiation of the duplex or of out-of-sequence thrusting. Both models can provide a satisfactory fit to the inverted data. However, the model with out-of-sequence thrusting implies an unrealistic convergence rate ≥30 mm yr −1 . The out-of-sequence thrust model can be adjusted to fit the convergence rate and the thermochronological data if the Main Central Thrust zone is assigned a constant geometry and a dip angle of about 30°and a slip rate of <1 mm yr −1 . In the duplex model, the 20 mm yr −1 convergence rate is partitioned between an overthrusting rate of 5.8 ± 1.4 mm yr −1 and an underthrusting rate of 14.2 ± 1.8 mm yr −1. Modern rock uplift rates are estimated to increase from about 0.9 ± 0.31 mm yr −1 in the Lesser Himalaya to 3.0 ± 0.9 mm yr −1 at the front of the high range, 86 ± 13 km from the Main Frontal Thrust. The effective friction coefficient is estimated to be 0.07 or smaller, and the radiogenic heat production of HHC units is estimated to be 2.2 ± 0.1 mW m −3. The midcrustal duplex initiated at 9.8 ± 1.7 Ma, leading to an increase of uplift rate at front of the High Himalaya from 0.9 ± 0.31 to 3.05 ± 0.9 mm yr −1 . We also run 3-D models by coupling PECUBE with a landscape evolution model (CASCADE). This modeling shows that the effect of the evolving topography can explain a fraction of the scatter observed in the data but not all of it, suggesting that lateral variations of the kinematics of crustal deformation and exhumation are likely. It has been argued that the steep physiographic transition at the foot of the Greater Himalayan Sequence indicates OOS thrusting, but our results demonstrate that the best fit duplex model derived from the thermochronological and thermobarometric data reproduces the present morphology of the Nepal Himalaya equally well.
Understanding of the evolution of fluid-fault interactions during earthquake cycles is a challenge that acoustic gas emission studies can contribute. A survey of the Sea of Marmara using a shipborne, multibeam echo sounder, with water column records, provided an accurate spatial distribution of offshore seeps. Gas emissions are spatially controlled by a combination of factors, including fault and fracture networks in connection to the Main Marmara Fault system and inherited faults, the nature and thickness of sediments (e.g., occurrence of impermeable or gas-bearing sediments and landslides), and the connectivity between the seafloor and gas sources, particularly in relation to the Eocene Thrace Basin. The relationship between seepage and fault activity is not linear, as active faults do not necessarily conduct gas, and scarps corresponding to deactivated fault strands may continue to channel fluids. Within sedimentary basins, gas is not expelled at the seafloor unless faulting, deformation, or erosional processes affect the sediments. On topographic highs, gas flares occur along the main fault scarps but are also associated with sediment deformation. The occurrence of gas emissions appears to be correlated with the distribution of microseismicity. The relative absence of earthquake-induced ground shaking along parts of the Istanbul-Silivri and Princes Islands segments is likely the primary factor responsible for the comparative lack of gas emissions along these fault segments. The spatiotemporal distribution of gas seeps may thus provide a complementary way to constrain earthquake geohazards by focusing the study on some key fault segments, e.g., the northern part of the locked Princes Islands segment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.