Skin barrier structure and function is essential to human health. Hitherto unrecognized functions of epidermal keratinocytes show that the skin plays an important role in adapting whole-body physiology to changing environments, including the capacity to produce a wide variety of hormones, neurotransmitters and cytokine that can potentially influence whole-body states, and quite possibly, even emotions. Skin microbiota play an integral role in the maturation and homeostatic regulation of keratinocytes and host immune networks with systemic implications. As our primary interface with the external environment, the biodiversity of skin habitats is heavily influenced by the biodiversity of the ecosystems in which we reside. Thus, factors which alter the establishment and health of the skin microbiome have the potential to predispose to not only cutaneous disease, but also other inflammatory non-communicable diseases (NCDs). Indeed, disturbances of the stratum corneum have been noted in allergic diseases (eczema and food allergy), psoriasis, rosacea, acne vulgaris and with the skin aging process. The built environment, global biodiversity losses and declining nature relatedness are contributing to erosion of diversity at a micro-ecological level, including our own microbial habitats. This emphasises the importance of ecological perspectives in overcoming the factors that drive dysbiosis and the risk of inflammatory diseases across the life course.
Rates of biodiversity loss are higher in freshwater ecosystems than in most terrestrial or marine ecosystems, making freshwater conservation a priority. However, prioritization methods are impeded by insufficient knowledge on the distribution and conservation status of freshwater taxa, particularly invertebrates. We evaluated the extinction risk of the world's 590 freshwater crayfish species using the IUCN Categories and Criteria and found 32% of all species are threatened with extinction. The level of extinction risk differed between families, with proportionally more threatened species in the Parastacidae and Astacidae than in the Cambaridae. Four described species were Extinct and 21% were assessed as Data Deficient. There was geographical variation in the dominant threats affecting the main centres of crayfish diversity. The majority of threatened US and Mexican species face threats associated with urban development, pollution, damming and water management. Conversely, the majority of Australian threatened species are affected by climate change, harvesting, agriculture and invasive species. Only a small proportion of crayfish are found within the boundaries of protected areas, suggesting that alternative means of long-term protection will be required. Our study highlights many of the significant challenges yet to come for freshwater biodiversity unless conservation planning shifts from a reactive to proactive approach.
Summary 1. AusRivAS (Australian River Assessment Scheme) models were developed, using macroinvertebrates as indicators, to assess the ecological condition of rivers in Western Australia as part of an Australia‐wide program. The models were based on data from 188 minimally disturbed reference sites and are similar to RIVPACS models used in Britain. The major habitats in the rivers (macrophyte, channel) were sampled separately and macroinvertebrates collected were identified to family level. 2. Laboratory sorting of preserved macroinvertebrate samples recovered about 90% of families present when 150 animals were collected, whereas live picking in the field recovered only 76%. 3. Reference sites clustered into five groups on the basis of macroinvertebrate families present. Using seven physical variables, a discriminant function allocated 73% of sites to the correct classification group. A discriminant function based on seven physical and two chemical variables allocated 81% of sites to the correct group. However, when the same reference sites were re‐sampled the following year, the nine variable discriminant function misallocated more sites than the seven variable function, owing to annual fluctuations in water chemistry that were not accompanied by changes in fauna. 4. In preliminary testing, the wet season channel model correctly assessed 80% of reference sites as undisturbed in the year subsequent to model building (10% of sites were expected to rate as disturbed because the 10th percentile was used as the threshold for disturbance). Nine sites from an independent data set, all thought to be disturbed, were assessed as such by the model. Results from twenty test sites, chosen because they represented a wide range of ecological condition, were less clear‐cut. In its current state the model reliably distinguishes undisturbed and severely disturbed sites. Subtle impacts are either detected inconsistently or do not affect ecological condition.
Policies aiming to preserve vegetated coastal ecosystems (VCE; tidal marshes, mangroves and seagrasses) to mitigate greenhouse gas emissions require national assessments of blue carbon resources. Here, we present organic carbon (C) storage in VCE across Australian climate regions and estimate potential annual CO2 emission benefits of VCE conservation and restoration. Australia contributes 5–11% of the C stored in VCE globally (70–185 Tg C in aboveground biomass, and 1,055–1,540 Tg C in the upper 1 m of soils). Potential CO2 emissions from current VCE losses are estimated at 2.1–3.1 Tg CO2-e yr-1, increasing annual CO2 emissions from land use change in Australia by 12–21%. This assessment, the most comprehensive for any nation to-date, demonstrates the potential of conservation and restoration of VCE to underpin national policy development for reducing greenhouse gas emissions.
SUMMARYConservation covenants (or easements) are flexible but legally enforceable documents attached to a land title restricting the use of that land, providing for the protection of important conservation values, while allowing the landholder to retain possession. Given the attractiveness of covenants to those who seek to expand national and regional nature conservation initiatives, it is important to understand landholder motivations for participation in programmes that covenant for nature conservation. This paper examines the likely influences on landholder decision making when it comes to conservation initiatives. A review of literature highlights key motivations and determinants, such as landholder demographics and the nature of the land tenure in question, their knowledge and awareness of the programme, financial circumstances, and perceptions of financial and other risks and benefits of the programme itself, including incentives and compensation. Underpinning, or mediating, the decision-making processes will be landholder philosophies and values, and five constructs are determined from the review, namely economic dependence on property, private property rights, confidence in perpetual covenant mechanisms, nature conservation equity and nature conservation ethic. Using these constructs, a series of explicit hypotheses is drawn, applicable to agencies dealing with conservation covenants and testable through an adaptive management approach. A conceptual model is presented to show hypothesized relationships between motivational factors and the five constructs that will lead to the uptake of covenants by landholders, providing direction for policy makers and managers of incentive programmes for nature conservation on private lands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.