Background Data in the literature about HSV reactivation in COVID-19 patients are scarce, and the association between HSV-1 reactivation and mortality remains to be determined. Our objectives were to evaluate the impact of Herpes simplex virus (HSV) reactivation in patients with severe SARS-CoV-2 infections primarily on mortality, and secondarily on hospital-acquired pneumonia/ventilator-associated pneumonia (HAP/VAP) and intensive care unit-bloodstream infection (ICU-BSI). Methods We conducted an observational study using prospectively collected data and HSV-1 blood and respiratory samples from all critically ill COVID-19 patients in a large reference center who underwent HSV tests. Using multivariable Cox and cause-specific (cs) models, we investigated the association between HSV reactivation and mortality or healthcare-associated infections. Results Of the 153 COVID-19 patients admitted for ≥ 48 h from Feb-2020 to Feb-2021, 40/153 (26.1%) patients had confirmed HSV-1 reactivation (19/61 (31.1%) with HSV-positive respiratory samples, and 36/146 (24.7%) with HSV-positive blood samples. Day-60 mortality was higher in patients with HSV-1 reactivation (57.5%) versus without (33.6%, p = 0.001). After adjustment for mortality risk factors, HSV-1 reactivation was associated with an increased mortality risk (hazard risk [HR] 2.05; 95% CI 1.16–3.62; p = 0.01). HAP/VAP occurred in 67/153 (43.8%) and ICU-BSI in 42/153 (27.5%) patients. In patients with HSV-1 reactivation, multivariable cause-specific models showed an increased risk of HAP/VAP (csHR 2.38, 95% CI 1.06–5.39, p = 0.037), but not of ICU-BSI. Conclusions HSV-1 reactivation in critically ill COVID-19 patients was associated with an increased risk of day-60 mortality and HAP/VAP.
IMPORTANCEThe benefit of high-dose dexamethasone and oxygenation strategies vs standard of care for patients with severe acute hypoxemic respiratory failure (AHRF) caused by COVID-19 pneumonia is debated.OBJECTIVES To assess the benefit of high-dose dexamethasone compared with standard of care dexamethasone, and to assess the benefit of high-flow nasal oxygen (HFNO 2 ) or continuous positive airway pressure (CPAP) compared with oxygen support standard of care (O 2 SC). DESIGN, SETTING, AND PARTICIPANTSThis multicenter, placebo-controlled randomized clinical trial was conducted in 19 intensive care units (ICUs) in France from April 2020 to January 2021. Eligible patients were consecutive ICU-admitted adults with COVID-19 AHRF. Randomization used a 2 × 3 factorial design for dexamethasone and oxygenation strategies; patients not eligible for at least 1 oxygenation strategy and/or already receiving invasive mechanical ventilation (IMV) were only randomized for dexamethasone. All patients were followed-up for 60 days. Data were analyzed from May 26 to July 31, 2021.INTERVENTIONS Patients received standard dexamethasone (dexamethasone-phosphate 6 mg/d for 10 days [or placebo prior to RECOVERY trial results communication]) or high-dose dexamethasone (dexamethasone-phosphate 20 mg/d on days 1-5 then 10 mg/d on days 6-10). Those not requiring IMV were additionally randomized to O 2 SC, CPAP, or HFNO 2 . MAIN OUTCOMES AND MEASURESThe main outcomes were time to all-cause mortality, assessed at day 60, for the dexamethasone interventions, and time to IMV requirement, assessed at day 28, for the oxygenation interventions. Differences between intervention groups were calculated using proportional Cox models and expressed as hazard ratios (HRs). RESULTS Among 841 screened patients, 546 patients (median [IQR] age, years; 414 [75.8%] men) were randomized between standard dexamethasone (276 patients, including 37 patients who received placebo) or high-dose dexamethasone (270 patients). Of these, 333 patients were randomized among O 2 SC (109 patients, including 56 receiving standard dexamethasone), CPAP (109 patients, including 57 receiving standard dexamethasone), and HFNO 2 (115 patients, including 56 receiving standard dexamethasone). There was no difference in 60-day mortality between standard and high-dose dexamethasone groups (HR, 0.96 [95% CI, 0.69-1.33]; P = .79). There was no significant difference for the cumulative incidence of IMV criteria at day 28 among O 2 support groups (O 2 SC vs CPAP: HR, 1.08 [95% CI, 0.71-1.63]; O 2 SC vs HFNO 2 : HR, 1.04 [95% CI, 0.69-1.55]) or 60-day mortality (O 2 SC vs CPAP: HR, 0.97 [95% CI, 0.58-1.61; O 2 SC vs HFNO 2 : HR, 0.89 [95% CI,). Interactions between interventions were not significant. CONCLUSIONS AND RELEVANCEIn this randomized clinical trial among ICU patients with COVID-19-related AHRF, high-dose dexamethasone did not significantly improve 60-day survival. The oxygenation strategies in patients who were not initially receiving IMV did not significantly modify 28-day risk of...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.