a b s t r a c tA fundamental problem in computer science is that of finding all the common zeros of m quadratic polynomials in n unknowns over F 2 . The cryptanalysis of several modern ciphers reduces to this problem. Up to now, the best complexity bound was reached by an exhaustive search in 4 log 2 n2 n operations. We give an algorithm that reduces the problem to a combination of exhaustive search and sparse linear algebra. This algorithm has several variants depending on the method used for the linear algebra step. We show that, under precise algebraic assumptions on the input system, the deterministic variant of our algorithm has complexity bounded by O(2 0.841n ) when m = n, while a probabilistic variant of the Las Vegas type has expected complexity O(2 0.792n ). Experiments on random systems show that the algebraic assumptions are satisfied with probability very close to 1. We also give a rough estimate for the actual threshold between our method and exhaustive search, which is as low as 200, and thus very relevant for cryptographic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.