InfiniBand is a registered trademark of the InfiniBand Trade Association.Intel is a registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.
Optimized Schwarz methods (OSM) are very popular methods which were introduced by P.L. Lions in [27] for elliptic problems and by B. Després in [8] for propagative wave phenomena. We give here a theory for Lions' algorithm that is the genuine counterpart of the theory developed over the years for the Schwarz algorithm. The first step is to introduce a symmetric variant of the ORAS (Optimized Restricted Additive Schwarz) algorithm [37] that is suitable for the analysis of a two-level method. Then we build a coarse space for which the convergence rate of the two-level method is guaranteed regardless of the regularity of the coefficients. We show scalability results for thousands of cores for nearly incompressible elasticity and the Stokes systems with a continuous discretization of the pressure.
Domain decomposition methods are, alongside multigrid methods, one of the dominant paradigms in contemporary large-scale partial differential equation simulation. In this paper, a lightweight implementation of a theoretically and numerically scalable preconditioner is presented in the context of overlapping methods. The performance of this work is assessed by numerical simulations executed on thousands of cores, for solving various highly heterogeneous elliptic problems in both 2D and 3D with billions of degrees of freedom. Such problems arise in computational science and engineering, in solid and fluid mechanics.While focusing on overlapping domain decomposition methods might seem too restrictive, it will be shown how this work can be applied to a variety of other methods, such as non-overlapping methods and abstract deflation based preconditioners. It is also presented how multilevel preconditioners can be used to avoid communication during an iterative process such as a Krylov method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.