Serpentine minerals in natural samples are dominated by lizardite and antigorite. In spite of numerous petrological experiments, the stability fields of these species remain poorly constrained. This paper presents the petrological observations and the Raman spectroscopy and XRD analyses of natural serpentinites from the Alpine paleo-accretionary wedge. Serpentine varieties are identified from a range of metamorphic pressure and temperature conditions from sub-greenschist (P < 4 kbar, T ~ 200-300°C) to eclogite facies conditions (P > 20 kbar, T > 460°C) along a subduction geothermal gradient. We used the observed mineral assemblage in natural serpentinite along with the T max estimated by Raman spectroscopy of the carbonaceous matter of the associated metasediments to constrain the temperature of the lizardite to antigorite transition at high pressures. We show that below 300°C, lizardite and locally chrysotile are the dominant species in the mesh texture. Between 320 and 390°C, lizardite is progressively replaced by antigorite at the grain boundaries through dissolutionprecipitation processes in the presence of SiO 2 enriched fluids and through a solid-state transition in the cores of the lizardite mesh. Above 390°C, under high-grade blueschist to eclogite facies conditions, antigorite is the sole stable serpentine mineral until the onset of secondary olivine crystallization at 460°C.
International audienceXMapTools is a MATLAB©-based graphical user interface program for electron microprobe X-ray image processing, which can be used to estimate the pressure-temperature conditions of crystallization of minerals in metamorphic rocks. This program (available online at http://www.xmaptools.com) provides a method to standardize raw electron microprobe data and includes functions to calculate the oxide weight percent compositions for various minerals. A set of external functions is provided to calculate structural formulae from the standardized analyses as well as to estimate pressure-temperature conditions of crystallization, using empirical and semi-empirical thermobarometers from the literature. Two graphical user interface modules, Chem2D and Triplot3D, are used to plot mineral compositions into binary and ternary diagrams. As an example, the software is used to study a high-pressure Himalayan eclogite sample from the Stak massif in Pakistan. The high-pressure paragenesis consisting of omphacite and garnet has been retrogressed to a symplectitic assemblage of amphibole, plagioclase and clinopyroxene. Mineral compositions corresponding to $165,000 analyses yield estimates for the eclogitic pressure-temperature retrograde path from 25 kbar to 9 kbar. Corresponding pressure- temperature maps were plotted and used to interpret the link between the equilibrium conditions of crystallization and the symplectitic microstructures. This example illustrates the usefulness of XMapTools for studying variations of the chemical composition of minerals and for retrieving information on metamorphic conditions on a microscale, towards computation of continuous pressure-temperature-and relative time path in zoned metamorphic minerals not affected by post-crystallization diffusion
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.