Wind-induced dynamic excitation is becoming a governing design action determining size and shape of modern Tall Timber Buildings (TTBs). The wind actions generate dynamic loading, causing discomfort or annoyance for occupants due to the perceived horizontal sway-i.e. vibration serviceability failure. Although some TTBs have been instrumented and measured to estimate their key dynamic properties (natural frequencies and damping), no systematic evaluation of dynamic performance pertinent to wind loading has been performed for the new and evolving construction technology used in TTBs. The DynaTTB project, funded by the Forest Value research program, mixes on site measurements on existing buildings excited by heavy shakers, for identification of the structural system, with laboratory identification of building elements mechanical features coupled with numerical modelling of timber structures. The goal is to identify and quantify the causes of vibration energy dissipation in modern TTBs and provide key elements to FE modelers.
Forced vibration tests have been conducted on the seven-storey timber building Eken in Mariestad in Sweden. The main objective is to estimate the building's dynamic properties from test data. The eigenfrequencies, mode shapes and their scaling are useful to calibrate numerical models. However, the most important outcomes are the estimates of the modal damping values. The reason is that the damping impacts the acceleration, and thus the serviceability of the building, and at the same time, it is very hard to model damping. So, during the design phase, one must rely on previous test data (of which very few exist for taller timber buildings) or rule of thumbs. It is therefore important to gain knowledge about the damping for timber buildings in order to enable good designs of future and taller timber buildings. The test data shows that the modal damping is roughly equal to 2% of the critical viscous ones for the eigenmodes extracted. The test campaign on Eken is made as a part of the project Dyna-TTB in which vibrational tests have been performed on eight high-rise timber buildings, in Europe, of which Eken is one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.