Background Linking different sources of medical data is a promising approach to analyze care trajectories. The aim of the INSHARE (Integrating and Sharing Health Big Data for Research) project was to provide the blueprint for a technological platform that facilitates integration, sharing, and reuse of data from 2 sources: the clinical data warehouse (CDW) of the Rennes academic hospital, called eHOP (entrepôt Hôpital), and a data set extracted from the French national claim data warehouse (Système National des Données de Santé [SNDS]). Objective This study aims to demonstrate how the INSHARE platform can support big data analytic tasks in the health field using a pharmacovigilance use case based on statin consumption and statin-drug interactions. Methods A Spark distributed cluster-computing framework was used for the record linkage procedure and all analyses. A semideterministic record linkage method based on the common variables between the chosen data sources was developed to identify all patients discharged after at least one hospital stay at the Rennes academic hospital between 2015 and 2017. The use-case study focused on a cohort of patients treated with statins prescribed by their general practitioner or during their hospital stay. Results The whole process (record linkage procedure and use-case analyses) required 88 minutes. Of the 161,532 and 164,316 patients from the SNDS and eHOP CDW data sets, respectively, 159,495 patients were successfully linked (98.74% and 97.07% of patients from SNDS and eHOP CDW, respectively). Of the 16,806 patients with at least one statin delivery, 8293 patients started the consumption before and continued during the hospital stay, 6382 patients stopped statin consumption at hospital admission, and 2131 patients initiated statins in hospital. Statin-drug interactions occurred more frequently during hospitalization than in the community (3800/10,424, 36.45% and 3253/14,675, 22.17%, respectively; P<.001). Only 121 patients had the most severe level of statin-drug interaction. Hospital stay burden (length of stay and in-hospital mortality) was more severe in patients with statin-drug interactions during hospitalization. Conclusions This study demonstrates the added value of combining and reusing clinical and claim data to provide large-scale measures of drug-drug interaction prevalence and care pathways outside hospitals. It builds a path to move the current health care system toward a Learning Health System using knowledge generated from research on real-world health data.
Clinical image data analysis is an active area of research. Integrating such data in a Clinical Data Warehouse (CDW) implies to unlock the PACS and RIS and to address interoperability and semantics issues. Based on specific functional and technical requirements, our goal was to propose a web service (I4DW) that allows users to query and access pixel data from a CDW by fully integrating and indexing imaging metadata. Here, we present the technical implementation of this workflow as well as the evaluation we carried out using a prostate cancer cohort use case. The query mechanism relies on a Dicom metadata hierarchy dynamically generated during the ETL Process. We evaluated the Dicom data transfer performance of I4DW, and found mean retrieval times of 5.94 seconds and 0.9 seconds to retrieve a complete DICOM series from the PACS and all metadata of a series. We could retrieve all patients and imaging tests of the prostate cancer cohort with a precision of 0.95 and a recall of 1. By leveraging the CMOVE method, our approach based on the Dicom protocol is scalable and domain-neutral. Future improvement will focus on performance optimization and de identification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.