Roughly speaking, an equational problem is a first order formula whose only predicate symbol is =. We propose some rules for the transformation of equational problems and study their correctness in various models. Then, we give completeness results with respect to some "simple" problems called solved forms. Such completeness results still hold when adding some control which moreover ensures termination. The termination proofs are given for a "weak" control and thus hold for the (large) class of algorithms obtained by restricting the scope of the rules. Finally, it must be noted that a by-product of our method is a decision procedure for the validity in the Herbrand Universe of any first order formula with the only predicate symbol =. 2 F will be assumed to be finite throughout this paper. The case where F is infinite is studied in Lassez, Maher & Marriott (1986) and Maher (1988), it seems to be simpler. 3 This is not the standard definition (as e.g. in Huet & Oppen 1980), but this allows substitutions in any F-algebra A, including the cases where A does not contain X
Explicit substitutions were proposed by Abadi, Cardelli, Curien, Hardin and Lévy to internalise substitutions into λ-calculus and to propose a mechanism for computing on substitutions. λν is another view of the same concept which aims to explain the process of substitution and to decompose it in small steps. It favours simplicity and preservation of strong normalisation. This way, another important property is missed, namely confluence on open terms. In spirit, λν is closely related to another calculus of explicit substitutions proposed by de Bruijn and called CλξΦ. In this paper, we introduce λν, we present CλξΦ in the same framework as λν and we compare both calculi. Moreover, we prove properties of λν; namely λν correctly implements β reduction, λν is confluent on closed terms, i.e. on terms of classical λ-calculus and on all terms that are derived from those terms, and finally λν preserves strong normalisation in the following sense: strongly β normalising terms are strongly λν normalising.
International audienceLambda calculus is the basis of functional programming and higher order proof assistants. However, little is known about combinatorial properties of lambda terms, in particular, about their asymptotic distribution and random generation. This paper tries to answer questions like: How many terms of a given size are there? What is a ''typical'' structure of a simply typable term? Despite their ostensible simplicity, these questions still remain unanswered, whereas solutions to such problems are essential for testing compilers and optimizing programs whose expected efficiency depends on the size of terms. Our approach toward the afore-mentioned problems may be later extended to any language with bound variables, i.e., with scopes and declarations. This paper presents two complementary approaches: one, theoretical, uses complex analysis and generating functions, the other, experimental, is based on a generator of lambda-terms. Thanks to de Bruijn indices, we provide three families of formulas for the number of closed lambda terms of a given size and we give four relations between these numbers which have interesting combinatorial interpretations. As a by-product of the counting formulas, we design an algorithm for generating lambda terms. Performed tests provide us with experimental data, like the average depth of bound variables and the average number of head lambdas. We also create random generators for various sorts of terms. Thereafter, we conduct experiments that answer questions like: What is the ratio of simply typable terms among all terms? (Very small!) How are simply typable lambda terms distributed among all lambda terms? (A typable term almost always starts with an abstraction.) In this paper, abstractions and applications have size 1 and variables have size 0
HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.